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Abstract. One of the pexiderized types of the orthogonally quadratic
functional equation is of the form

f(x + y) + g(x− y) = h(x) + k(y) (x ⊥ y).

In this paper, we investigate the general solution of this orthogonally
pexider functional equation on an orthogonality space in the sense of
Rätz, where the function g is odd.

1. Introduction

J. Rätz introduced a defnition of an abstract orthogonality by using four
axioms on a real vector space X with dimX ≥ 2 (See [3]). Suppose X is a
real vector space with dimX ≥ 2 and ⊥ is a binary relation on X with the
following properties:

(O1) totality of ⊥ for zero: x ⊥ 0 and 0 ⊥ x for all x ∈ X;
(O2) independence: if x, y ∈ X − {0} and x ⊥ y, then x, y are linearly

independent;
(O3) homogeneity: if x, y ∈ X,x ⊥ y, then αx ⊥ βy for all α, β ∈ R;
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(O4) the Thalesian property: if P is a 2-dimensional subspace of X, for
any x ∈ P and any λ ∈ R+, there exists y ∈ P such that x ⊥ y and
x+ y ⊥ λx− y.

The pair (X,⊥) is called an orthogonality space. Some interesting examples
of orthogonality spaces are

(a) Any real vector space X can be made into a orthogonality space with
the trivial orthogonality defined on X by (i) for all x ∈ X, x ⊥ 0
and 0 ⊥ x, (ii) for all x, y ∈ X \ {0}, x ⊥ y if and only if x, y are
linearly independent.

(b) Any inner product space (X, 〈·, ·〉) is an orthogonality space with the
ordinary orthogonality given by x ⊥ y if and only if 〈x, y〉 = 0.

(c) Any normed space (X, ‖ · ‖) can be made into a orthogonality space
with the Birkhoff-James orthogonality defined by x ⊥ y if and only
if ‖x‖ ≤ ‖x+ λy‖ for all λ ∈ R.

The relation ⊥ is called symmetric if x ⊥ y implies that y ⊥ x for all
x, y ∈ X. Clearly examples (a) and (b) are symmetric but example (c) is
not.

Let H be an inner product space with dimH > 2 with the usual or-
thogonality given by x ⊥ y ⇔ 〈x, y〉 = 0. Suppose that the functions
f, g, h, k : H → R satisfy the orthgonally pexider functional equation f(x+
y) + g(x− y) = h(x) + k(y) (x ⊥ y) (∗). Fochi [1] showed that the general
solution of (∗) is of the form

f(x) = 1
2

(
Q(x) +A(x) +B(x) + φ(‖x‖) + h(0) + k(0)

)
,

g(x) = 1
2

(
Q(x) +A(x)−B(x)− φ(‖x‖) + h(0) + k(0)

)
,

h(x) = Q(x) +A(x) + h(0), k(x) = Q(x) +B(x) + k(0),

where Q : H → R is a quadratic function, A,B : H → R are additive
functions and φ : [0,∞)→ R defined by φ(‖x‖) = fe(x)− ge(x) in which fe

and ge are the even part of f and the even part of g, respectively.
In this paper, let (X,⊥) be an orthogonality space in which⊥ is symmetric

and Y be a real vector space. We investigate the general solution of (∗),
where the function g is odd.

2. The Result

In this section, we investigate the general solution of (∗), where the or-
thogonality is in the sense of Rätz and the function g is odd.

Lemma 2.1. Let (X,⊥) be an orthogonality space and Y be a vector space.
If the odd function A : X → Y satisfies the orthgonally functional equation
A(x+ y) +A(x− y) = 2A(x) (x ⊥ y), then A is additive.

Proof. Let x, y ∈ X with x ⊥ y. Interchanging x with y in A(x+y) +A(x−
y) = 2A(x), we get A(x + y) − A(x − y) = 2A(y). By these equations we
have A(x+ y) = A(x) +A(y). Thus A is orthogonally additive and since A
is odd, so on account of Theorem 5 of [3], it is additive. �
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Theorem 2.2. Let (X,⊥) be an orthogonality space, where ⊥ is symmetric
and Y be a vector space. If the functions f, g, h, k : X → Y satisfy the
orthgonally pexider functional equation

x ⊥ y ⇒ f(x+ y) + g(x− y) = h(x) + k(y), (2.1)

and the function g is odd, then there exist orthogonally quadratic function
Q : X → Y and additive functions A,B : X → Y such that

f(x) = Q(x) + 1
2

(
A(x) +B(x)

)
+ f(0), g(x) = 1

2

(
A(x)−B(x)

)
,

h(x) = Q(x) +A(x) + h(0), k(x) = Q(x) +B(x) + k(0).

Proof. Putting x = y = 0 in (2.1), we get

f(0) = h(0) + k(0). (2.2)

Also putting y = 0 and x = 0 respectively in (2.1), we get

f(x) + g(x) = h(x) + k(0), (2.3)

f(y) + g(−y) = h(0) + k(y), (2.4)

for all x, y ∈ X. Replacing y by −x in (2.4), we have

f(−x) + g(x) = h(0) + k(−x). (2.5)

From (2.3) and (2.5), we have f(x)− f(−x) = h(x)− k(−x) + k(0)− h(0).
Replacing x by−x in the last equation, we get f(−x)−f(x) = h(−x)−k(x)+
k(0)−h(0). Using the last two equations, we obtain h(x)+h(−x)−2h(0) =
k(x) + k(−x)− 2k(0) (x ∈ X) . Define

Q(x) := 1
2

(
h(x)+h(−x)

)
−h(0) = 1

2

(
k(x)+k(−x)

)
−k(0) (x ∈ X), (2.6)

then Q is an even function and Q(0) = 0.
Replacing x by −x in (2.1), we get

f(−x+ y) + g(−x− y) = h(−x) + k(y) (x ⊥ y). (2.7)

From (2.1) and (2.7) (adding and subtracting, respectively), we get

f(x+y)+g(x−y)+f(−x+y)+g(−x−y) = 2Q(x)+2k(y)+2h(0) (x ⊥ y),
(2.8)

f(x+y)+g(x−y)−f(−x+y)−g(−x−y) = h(x)−h(−x) (x ⊥ y). (2.9)

Define the function A : X → Y by A(x) := 1
2

(
h(x)− h(−x)

)
(x ∈ X), then

A is an odd function and so A(0) = 0. Using (2.8) and (2.9), we obtain

f(x+ y) + g(x− y) = Q(x) +A(x) + h(0) + k(y) (x ⊥ y),

and then by (2.1), we have

h(x) = Q(x) +A(x) + h(0) (x ∈ X). (2.10)

Replacing y by −y in (2.1), we get

f(x− y) + g(x+ y) = h(x) + k(−y) (x ⊥ y). (2.11)
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From (2.1) and (2.11) (adding and subtracting, respectively), we get

f(x+ y) + g(x− y) + f(x− y) + g(x+ y) = 2h(x) + 2Q(y) + 2k(0) (x ⊥ y),
(2.12)

f(x+ y) + g(x− y)− f(x− y)− g(x+ y) = k(y)− k(−y) (x ⊥ y). (2.13)

Define the function B : X → Y by B(x) := 1
2

(
k(x)− k(−x)

)
(x ∈ X), then

B is an odd function and so B(0) = 0. Using (2.12) and (2.13), we obtain

f(x+ y) + g(x− y) = Q(y) +B(y) + h(x) + k(0) (x ⊥ y),

and then by (2.1), we have

k(y) = Q(y) +B(y) + k(0) (y ∈ X). (2.14)

Using (2.1), (2.10) and (2.14), we get

f(x+y)+g(x−y) = Q(x)+Q(y)+A(x)+B(y)+h(0)+k(0) (x ⊥ y). (2.15)

Putting y = 0 and x = 0 respectively in (2.15) and using (2.2), we get

f(x) + g(x) = Q(x) +A(x) + f(0) (x ∈ X),

f(x)− g(x) = Q(x) +B(x) + f(0) (x ∈ X).

From the last equations, we obtain

f(x) = Q(x) + 1
2

(
A(x) +B(x)

)
+ f(0) (x ∈ X), (2.16)

g(x) = 1
2

(
A(x)−B(x)

)
(x ∈ X). (2.17)

It remains to show that Q is orthogonality quadratic and A,B are additive.
From (2.16), we have f(−x) = Q(x)− 1

2

(
A(x)+B(x)

)
+f(0), and so f(x)+

f(−x) = 2Q(x) + 2f(0) which implies that

Q(x) = 1
2

(
f(x) + f(−x)

)
− f(0) (x ∈ X). (2.18)

Interchanging x by y in (2.15), we have

f(x+ y)− g(x− y) = Q(x) +Q(y) +A(y) +B(x) + f(0) (x ⊥ y).

Using the last equation and (2.15), we obtain

2f(x+ y) = 2Q(x) + 2Q(y) +A(x) +A(y) +B(x) +B(y) + 2f(0) (x ⊥ y),

which implies that

f(x+ y) = Q(x) +Q(y) + 1
2

(
A(x) +A(y) +B(x) +B(y)

)
+ f(0) (x ⊥ y).

(2.19)
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Let x, y ∈ X with x ⊥ y, using (2.18) and (2.19), we can conclude that

Q(x+ y) +Q(x− y)

= 1
2

(
f(x+ y) + f(−x− y)

)
− f(0) + 1

2

(
f(x− y) + f(−x+ y)

)
− f(0)

= 1
2

(
f(x+ y) + f(−x− y) + f(x− y) + f(−x+ y)

)
− 2f(0)

= 1
2

(
Q(x) +Q(y) + 1

2

(
A(x) +A(y) +B(x) +B(y)

)
+ f(0)

+Q(x) +Q(y) + 1
2

(
−A(x)−A(y)−B(x)−B(y)

)
+ f(0)

+Q(x) +Q(y) + 1
2

(
A(x)−A(y) +B(x)−B(y)

)
+ f(0)

+Q(x) +Q(y) + 1
2

(
−A(x) +A(y)−B(x) +B(y)

)
+ f(0)

)
− 2f(0)

= 2Q(x) + 2Q(y).

Thus the function Q is orthogonally quadratic. From (2.16) and (2.17), we
get

A(x) = f(x) + g(x)−Q(x)− f(0) (x ∈ X). (2.20)

Thus for any x, y ∈ X with x ⊥ y, by (2.15) and (2.20), we get

A(x+ y) +A(x− y)

= f(x+ y) + g(x+ y)−Q(x+ y)− f(0)

+ f(x− y) + g(x− y)−Q(x− y)− f(0)

= Q(x) +Q(y) +A(x) +B(y) + f(0) +Q(x) +Q(y) +A(x)−B(y) + f(0)

−Q(x+ y)−Q(x− y)− 2f(0) = 2A(x).

Hence by Lemma 2.1, A is additive. This completes the proof. �

3. Conclusion

Let (X,⊥) be an orthogonality space in which ⊥ is symmetric and Y be
a real vector space. In this paper, we investigate the general solution of the
orthgonally pexider functional equation f(x+y)+g(x−y) = h(x)+k(y) (x ⊥
y), where the function g is odd.
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