

# **ON ORTHOGONALLY PEXIDER FUNCTIONAL EQUATION** f(x+y) + g(x-y) = h(x) + k(y)

SAYED KHALIL EKRAMI\*

Department of Mathematics, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran. khalil.ekrami@gmail.com, ekrami@pnu.ac.ir

ABSTRACT. One of the pexiderized types of the orthogonally quadratic functional equation is of the form

f(x+y) + g(x-y) = h(x) + k(y)  $(x \perp y).$ 

In this paper, we investigate the general solution of this orthogonally pexider functional equation on an orthogonality space in the sense of Rätz, where the function g is odd.

## 1. INTRODUCTION

J. Rätz introduced a definition of an abstract orthogonality by using four axioms on a real vector space X with  $\dim X \ge 2$  (See [3]). Suppose X is a real vector space with  $\dim X \ge 2$  and  $\perp$  is a binary relation on X with the following properties:

- $(O_1)$  totality of  $\perp$  for zero:  $x \perp 0$  and  $0 \perp x$  for all  $x \in X$ ;
- (O<sub>2</sub>) independence: if  $x, y \in X \{0\}$  and  $x \perp y$ , then x, y are linearly independent;
- (O<sub>3</sub>) homogeneity: if  $x, y \in X, x \perp y$ , then  $\alpha x \perp \beta y$  for all  $\alpha, \beta \in \mathbb{R}$ ;

<sup>2020</sup> Mathematics Subject Classification. Primary 39B52; Secondary 39B55

Key words and phrases. functional equation, orthogonality, quadratic functional equation, additive functional equation.

<sup>\*</sup> Speaker.

### S. KH. EKRAMI\*

(O<sub>4</sub>) the Thalesian property: if P is a 2-dimensional subspace of X, for any  $x \in P$  and any  $\lambda \in \mathbb{R}^+$ , there exists  $y \in P$  such that  $x \perp y$  and  $x + y \perp \lambda x - y$ .

The pair  $(X, \perp)$  is called an orthogonality space. Some interesting examples of orthogonality spaces are

- (a) Any real vector space X can be made into a orthogonality space with the trivial orthogonality defined on X by (i) for all  $x \in X$ ,  $x \perp 0$  and  $0 \perp x$ , (ii) for all  $x, y \in X \setminus \{0\}$ ,  $x \perp y$  if and only if x, y are linearly independent.
- (b) Any inner product space  $(X, \langle \cdot, \cdot \rangle)$  is an orthogonality space with the ordinary orthogonality given by  $x \perp y$  if and only if  $\langle x, y \rangle = 0$ .
- (c) Any normed space  $(X, \|\cdot\|)$  can be made into a orthogonality space with the Birkhoff-James orthogonality defined by  $x \perp y$  if and only if  $\|x\| \leq \|x + \lambda y\|$  for all  $\lambda \in \mathbb{R}$ .

The relation  $\perp$  is called symmetric if  $x \perp y$  implies that  $y \perp x$  for all  $x, y \in X$ . Clearly examples (a) and (b) are symmetric but example (c) is not.

Let H be an inner product space with dim H > 2 with the usual orthogonality given by  $x \perp y \Leftrightarrow \langle x, y \rangle = 0$ . Suppose that the functions  $f, g, h, k : H \to \mathbb{R}$  satisfy the orthogonally pexider functional equation  $f(x + y) + g(x - y) = h(x) + k(y) (x \perp y)$  (\*). Fochi [1] showed that the general solution of (\*) is of the form

$$f(x) = \frac{1}{2} (Q(x) + A(x) + B(x) + \phi(||x||) + h(0) + k(0)),$$
  

$$g(x) = \frac{1}{2} (Q(x) + A(x) - B(x) - \phi(||x||) + h(0) + k(0)),$$
  

$$h(x) = Q(x) + A(x) + h(0), \ k(x) = Q(x) + B(x) + k(0),$$

where  $Q : H \to \mathbb{R}$  is a quadratic function,  $A, B : H \to \mathbb{R}$  are additive functions and  $\phi : [0, \infty) \to \mathbb{R}$  defined by  $\phi(||x||) = f^e(x) - g^e(x)$  in which  $f^e$ and  $g^e$  are the even part of f and the even part of g, respectively.

In this paper, let  $(X, \bot)$  be an orthogonality space in which  $\bot$  is symmetric and Y be a real vector space. We investigate the general solution of (\*), where the function g is odd.

### 2. The Result

In this section, we investigate the general solution of (\*), where the orthogonality is in the sense of Rätz and the function g is odd.

**Lemma 2.1.** Let  $(X, \bot)$  be an orthogonality space and Y be a vector space. If the odd function  $A : X \to Y$  satisfies the orthogonally functional equation A(x+y) + A(x-y) = 2A(x)  $(x \bot y)$ , then A is additive.

*Proof.* Let  $x, y \in X$  with  $x \perp y$ . Interchanging x with y in A(x+y) + A(x-y) = 2A(x), we get A(x+y) - A(x-y) = 2A(y). By these equations we have A(x+y) = A(x) + A(y). Thus A is orthogonally additive and since A is odd, so on account of Theorem 5 of [3], it is additive.  $\Box$ 

 $\mathbf{2}$ 

**Theorem 2.2.** Let  $(X, \bot)$  be an orthogonality space, where  $\bot$  is symmetric and Y be a vector space. If the functions  $f, g, h, k : X \to Y$  satisfy the orthogonally pexider functional equation

$$x \perp y \quad \Rightarrow \quad f(x+y) + g(x-y) = h(x) + k(y),$$
 (2.1)

and the function g is odd, then there exist orthogonally quadratic function  $Q: X \to Y$  and additive functions  $A, B: X \to Y$  such that

$$f(x) = Q(x) + \frac{1}{2} (A(x) + B(x)) + f(0), \quad g(x) = \frac{1}{2} (A(x) - B(x)),$$
  
$$h(x) = Q(x) + A(x) + h(0), \quad k(x) = Q(x) + B(x) + k(0).$$

*Proof.* Putting x = y = 0 in (2.1), we get

$$f(0) = h(0) + k(0).$$
(2.2)

Also putting y = 0 and x = 0 respectively in (2.1), we get

$$f(x) + g(x) = h(x) + k(0), \qquad (2.3)$$

$$f(y) + g(-y) = h(0) + k(y), \qquad (2.4)$$

for all  $x, y \in X$ . Replacing y by -x in (2.4), we have

$$f(-x) + g(x) = h(0) + k(-x).$$
(2.5)

From (2.3) and (2.5), we have f(x) - f(-x) = h(x) - k(-x) + k(0) - h(0). Replacing x by -x in the last equation, we get f(-x) - f(x) = h(-x) - k(x) + k(0) - h(0). Using the last two equations, we obtain h(x) + h(-x) - 2h(0) = k(x) + k(-x) - 2k(0) ( $x \in X$ ). Define

$$Q(x) := \frac{1}{2} (h(x) + h(-x)) - h(0) = \frac{1}{2} (k(x) + k(-x)) - k(0) \quad (x \in X), \ (2.6)$$

then Q is an even function and Q(0) = 0.

Replacing x by -x in (2.1), we get

$$f(-x+y) + g(-x-y) = h(-x) + k(y) \quad (x \perp y).$$
(2.7)

From (2.1) and (2.7) (adding and subtracting, respectively), we get

$$f(x+y)+g(x-y)+f(-x+y)+g(-x-y) = 2Q(x)+2k(y)+2h(0) \quad (x \perp y),$$
(2.8)

$$f(x+y) + g(x-y) - f(-x+y) - g(-x-y) = h(x) - h(-x) \quad (x \perp y).$$
(2.9)

Define the function  $A: X \to Y$  by  $A(x) := \frac{1}{2}(h(x) - h(-x))$   $(x \in X)$ , then A is an odd function and so A(0) = 0. Using (2.8) and (2.9), we obtain

$$f(x+y) + g(x-y) = Q(x) + A(x) + h(0) + k(y) \quad (x \perp y)$$

and then by (2.1), we have

$$h(x) = Q(x) + A(x) + h(0) \quad (x \in X).$$
(2.10)

Replacing y by -y in (2.1), we get

$$f(x-y) + g(x+y) = h(x) + k(-y) \quad (x \perp y).$$
(2.11)

From (2.1) and (2.11) (adding and subtracting, respectively), we get

$$f(x+y) + g(x-y) + f(x-y) + g(x+y) = 2h(x) + 2Q(y) + 2k(0) \quad (x \perp y),$$
(2.12)

$$f(x+y) + g(x-y) - f(x-y) - g(x+y) = k(y) - k(-y) \quad (x \perp y).$$
(2.13)

Define the function  $B: X \to Y$  by  $B(x) := \frac{1}{2}(k(x) - k(-x))$   $(x \in X)$ , then *B* is an odd function and so B(0) = 0. Using (2.12) and (2.13), we obtain

$$f(x+y) + g(x-y) = Q(y) + B(y) + h(x) + k(0) \quad (x \perp y),$$

and then by (2.1), we have

$$k(y) = Q(y) + B(y) + k(0) \quad (y \in X).$$
(2.14)

Using (2.1), (2.10) and (2.14), we get

$$f(x+y)+g(x-y) = Q(x)+Q(y)+A(x)+B(y)+h(0)+k(0) \quad (x \perp y).$$
(2.15)

Putting y = 0 and x = 0 respectively in (2.15) and using (2.2), we get

$$f(x) + g(x) = Q(x) + A(x) + f(0) \quad (x \in X),$$
  
$$f(x) - g(x) = Q(x) + B(x) + f(0) \quad (x \in X).$$

From the last equations, we obtain

$$f(x) = Q(x) + \frac{1}{2} (A(x) + B(x)) + f(0) \quad (x \in X),$$
(2.16)

$$g(x) = \frac{1}{2} (A(x) - B(x)) \quad (x \in X).$$
(2.17)

It remains to show that Q is orthogonality quadratic and A, B are additive. From (2.16), we have  $f(-x) = Q(x) - \frac{1}{2}(A(x) + B(x)) + f(0)$ , and so f(x) + f(-x) = 2Q(x) + 2f(0) which implies that

$$Q(x) = \frac{1}{2} (f(x) + f(-x)) - f(0) \quad (x \in X).$$
(2.18)

Interchanging x by y in (2.15), we have

$$f(x+y) - g(x-y) = Q(x) + Q(y) + A(y) + B(x) + f(0) \quad (x \perp y).$$

Using the last equation and (2.15), we obtain

$$2f(x+y) = 2Q(x) + 2Q(y) + A(x) + A(y) + B(x) + B(y) + 2f(0) \quad (x \perp y),$$

which implies that

$$f(x+y) = Q(x) + Q(y) + \frac{1}{2} (A(x) + A(y) + B(x) + B(y)) + f(0) \quad (x \perp y).$$
(2.19)

Let  $x, y \in X$  with  $x \perp y$ , using (2.18) and (2.19), we can conclude that Q(x+y) + Q(x-y)  $= \frac{1}{2} \Big( f(x+y) + f(-x-y) \Big) - f(0) + \frac{1}{2} \Big( f(x-y) + f(-x+y) \Big) - f(0)$   $= \frac{1}{2} \Big( f(x+y) + f(-x-y) + f(x-y) + f(-x+y) \Big) - 2f(0)$   $= \frac{1}{2} \Big( Q(x) + Q(y) + \frac{1}{2} \Big( A(x) + A(y) + B(x) + B(y) \Big) + f(0)$   $+ Q(x) + Q(y) + \frac{1}{2} \Big( -A(x) - A(y) - B(x) - B(y) \Big) + f(0)$   $+ Q(x) + Q(y) + \frac{1}{2} \Big( A(x) - A(y) + B(x) - B(y) \Big) + f(0)$   $+ Q(x) + Q(y) + \frac{1}{2} \Big( -A(x) + A(y) - B(x) + B(y) \Big) + f(0) \Big)$ = 2Q(x) + 2Q(y).

Thus the function Q is orthogonally quadratic. From (2.16) and (2.17), we get

$$A(x) = f(x) + g(x) - Q(x) - f(0) \quad (x \in X).$$
(2.20)  
 $u \in X$  with  $x + u$  by (2.15) and (2.20) we get

Thus for any 
$$x, y \in X$$
 with  $x \perp y$ , by (2.15) and (2.20), we get  
 $A(x+y) + A(x-y)$   
 $= f(x+y) + g(x+y) - Q(x+y) - f(0)$   
 $+ f(x-y) + g(x-y) - Q(x-y) - f(0)$   
 $= Q(x) + Q(y) + A(x) + B(y) + f(0) + Q(x) + Q(y) + A(x) - B(y) + f(0)$   
 $- Q(x+y) - Q(x-y) - 2f(0) = 2A(x).$ 

Hence by Lemma 2.1, A is additive. This completes the proof.

#### 3. CONCLUSION

Let  $(X, \perp)$  be an orthogonality space in which  $\perp$  is symmetric and Y be a real vector space. In this paper, we investigate the general solution of the orthogonally pexider functional equation f(x+y)+g(x-y) = h(x)+k(y) ( $x \perp y$ ), where the function g is odd.

#### References

- M. Fochi, General Solutions of Two Quadratic Functional Equations of Pexider Type on Orthogonal Vectors, Abstr. Appl. Anal. 2012 (SI14) 1–10, 2012. https://doi.org/10.1155/2012/675810.
- M.S. Moslehian, On the orthogonal stability of the Pexiderized quadratic equation, J. Difference Equ. Appl. 11 (2005) 999–1004.
- 3. J. Rätz, On orthogonally additive mappings, Aequationes Math. 28 (1985) 35-49.