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Abstract. Let H be a real inner product space. In this paper, we show
that if a mapping f : H → H satisfies

f(x + y) = f(x) + f(y)

for all x, y ∈ H with x ⊥ y and

‖f(x)‖ = ‖x‖
for all x,∈ H, then f is an additive mapping.

1. Introduction

There are several orthogonality notions on a real normed space such as
Birkhoff-James, isosceles, Phythagorean, Roberts and Diminnie ([3]). J.
Rätz [1] introduced an abstract definition of orthogonality on a real vector
space by using four axioms. Let us recall the orthogonality in the sense of
Rätz.

Definition 1.1. Suppose X is a real vector space with dimX ≥ 2 and ⊥ is
a binary relation on X with the following properties:

(O1) totality of ⊥ for zero: x ⊥ 0 and 0 ⊥ x for all x ∈ X;
(O2) independence: if x, y ∈ X \ {0} and x ⊥ y, then x, y are linearly

independent;
(O3) homogeneity: if x, y ∈ X,x ⊥ y, then αx ⊥ βy for all α, β ∈ R;
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(O4) the Thalesian property: if P is a 2-dimensional subspace of X, for
any x ∈ P and any λ ∈ R+, there exists y ∈ P such that x ⊥ y and
x+ y ⊥ λx− y.

The pair (X,⊥) is called an orthogonality space. By an orthogonality
normed space we mean an orthogonality space equipped with a norm.

Some interesting examples of orthogonality spaces are

(a) Any real vector space X can be made into a orthogonality space
with the trivial orthogonality defined on X by

(i) for all x ∈ X, x ⊥ 0 and 0 ⊥ x,
(ii) for all x, y ∈ X \ {0}, x ⊥ y if and only if x, y are linearly

independent.
(b) Any inner product space (X, 〈·, ·〉) is an orthogonality space with the

ordinary orthogonality given by x ⊥ y if and only if 〈x, y〉 = 0.
(c) Any normed space (X, ‖ · ‖) can be made into a orthogonality space

with the Birkhoff-James orthogonality defined by x ⊥ y if and only
if ‖x‖ ≤ ‖x+ λy‖ for all λ ∈ R.

The relation ⊥ is called symmetric if x ⊥ y implies that y ⊥ x for all
x, y ∈ X. Clearly examples (a) and (b) are symmetric but example (c)
is not. It is remarkable to note that a real normed space of dimension
greater than 2 is an inner product space if and only if the Birkhoff-James
orthogonality is symmetric.

Let X be a orthogonality vector space in the sense of Rätz and Y be an
abelian group. A function f : X → Y is called orthogonally additive, if
f(x+ y) = f(x) + f(y) for all x, y ∈ X with x ⊥ y.

An orthogonally additive mapping can not be additive or linear in general.
For example the orthogonally additive mapping f : H → R defined on inner
product space H by f(x) = ‖x‖2 is a quadratic function, since it satisfies
the quadratic functional equation

q(x+ y) + q(x− y) = 2q(x) + 2q(y)

for all x, y ∈ X.
Rätz in Corollary 7 of [1] investigated the structure of orthogonally ad-

ditive mappings and showed that any orthogonally additive mapping f is
of the form a+ q, for a unique additive mapping a and a unique quadratic
mapping q.

Moreover he showed that if H is a real inner product space, then any
orthogonally additive mapping f : H → Y is of the form

f(x) = a(‖x‖2) + b(x) (1.1)

for all x ∈ H, where a : R → Y and b : H → Y are additive mapping
uniquely determined by f . In this paper, we show that any orthogonally
additive isometry on an inner product space is an additive mapping.
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2. The result

Theorem 2.1. Let H be a real inner product space. If f : H → H is an
orthogonally additive mapping such that

‖f(x)‖ = ‖x‖
for all x ∈ H, then f is an additive mapping.

Proof. Let 〈., .〉 denote the inner product of H. It follows from (1.1) that

‖x‖2 = ‖f(x)‖2

= 〈f(x), f(x)〉
= 〈a(‖x‖2) + b(x), a(‖x‖2) + b(x)〉
=

∥∥a(‖x‖2)
∥∥2 + 2〈a(‖x‖2), b(x)〉+ ‖b(x)‖2

for all x ∈ H.
Let r ∈ Q. Then replacing x by rx we get

r2‖x‖2 = r4
∥∥a(‖x‖2)

∥∥2 + 2r3〈a(‖x‖2), b(x)〉+ r2‖b(x)‖2 (2.1)

for all x ∈ H. Dividing the equation (2.1) by r4 we have

1
r2
‖x‖2 =

∥∥a(‖x‖2)
∥∥2 + 21

r 〈a(‖x‖2), b(x)〉+ 1
r2
‖b(x)‖2

for all x ∈ H. Now taking limit as r →∞, we get

a(‖x‖2) = 0, ‖b(x)‖ = ‖x‖
for all x ∈ H.

For each t > 0, put x =
√
t‖y‖−1y where 0 6= y ∈ H. Then x ∈ H and

a(t) = a(t‖y‖−2‖y‖2) = a(
∥∥√t‖y‖−1y∥∥2) = a(‖x‖2) = 0.

Thus a(t) = 0 for all t > 0. Also since a is an additive mapping, so a is
odd. Therefore a(t) = −a(−t) = 0 for all t < 0. This implies that a = 0 on
R. Thus f(x) = b(x) for all x ∈ H and f is an additive mapping. �

Proposition 2.2. Suppose that the functions f , a and b satisfy the equation
(1.1) for all x ∈ H. If a : R→ H and b : H → H are linear and f : H → H
is bijective, then f is linear.

Proof. Suppose that a 6= 0 on R. Thus for 0 6= a(1) ∈ H, there exists a
0 6= x0 ∈ H such that f(x0) = −a(1). Then we have

−a(1) = f(x0) = f(x) = a(‖x0‖2) + b(x0) = ‖x0‖2a(1) + b(x0).

It follows that (1 + ‖x0‖2)a(1) = −b(x0) and Then

a(1) = b
( −x0

1 + ‖x0‖2
)
.

Therefore

f(x) = a(‖x‖2) + b(x) = ‖x‖2a(1) + b(x) = ‖x‖2b
( −x0

1 + ‖x0‖2
)

+ b(x)
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for all x ∈ H. So for x = 1+‖x0‖2
‖x0‖2 x0 6= 0 we have

f
(
1+‖x0‖2
‖x0‖2 x0

)
=

∥∥∥1+‖x0‖2
‖x0‖2 x0

∥∥∥2b( −x0
1 + ‖x0‖2

)
+ b

(
1+‖x0‖2
‖x0‖2 x0

)
= b

(∥∥∥1+‖x0‖2
‖x0‖2 x0

∥∥∥2 −x0
1 + ‖x0‖2

+ 1+‖x0‖2
‖x0‖2 x0

)
= b

(
− 1+‖x0‖2

‖x0‖2 x0 + 1+‖x0‖2
‖x0‖2 x0

)
= b(0) = 0.

This contradicts the injectivity of f . Thus a = 0 on R and then f = b is
linear. �
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