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ABSTRACT. Let H be a real inner product space. In this paper, we show
that if a mapping f : H — H satisfies

fla+y)=f@)+ fy)
for all z,y € H with = L y and

1 @) = [l
for all z,€ H, then f is an additive mapping.

1. INTRODUCTION

There are several orthogonality notions on a real normed space such as
Birkhoff-James, isosceles, Phythagorean, Roberts and Diminnie ([3]). J.
Rétz [1] introduced an abstract definition of orthogonality on a real vector
space by using four axioms. Let us recall the orthogonality in the sense of
Ratz.

Definition 1.1. Suppose X is a real vector space with dimX > 2 and L is
a binary relation on X with the following properties:

(O1) totality of L for zero: z 1. 0 and 0 L z for all x € X;

(O2) independence: if z,y € X \ {0} and = L y, then z,y are linearly
independent;

(O3) homogeneity: if z,y € X,z L y, then ax L By for all , 5 € R;
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(O4) the Thalesian property: if P is a 2-dimensional subspace of X, for
any x € P and any A\ € RT, there exists y € P such that z L y and
c+y Ll —y.

The pair (X, 1) is called an orthogonality space. By an orthogonality
normed space we mean an orthogonality space equipped with a norm.

Some interesting examples of orthogonality spaces are

(a) Any real vector space X can be made into a orthogonality space

with the trivial orthogonality defined on X by
(i) forallz € X, L 0 and 0 L =,
(ii) for all z,y € X \ {0}, z L y if and only if =,y are linearly
independent.

(b) Any inner product space (X, (-,-)) is an orthogonality space with the
ordinary orthogonality given by = L y if and only if (x,y) = 0.

(¢) Any normed space (X, | -||) can be made into a orthogonality space
with the Birkhoff-James orthogonality defined by = L y if and only
if ||z]| < ||z + Ayl for all X € R.

The relation L is called symmetric if x 1 y implies that y 1 z for all
xz,y € X. Clearly examples (a) and (b) are symmetric but example (c)
is not. It is remarkable to note that a real normed space of dimension
greater than 2 is an inner product space if and only if the Birkhoff-James
orthogonality is symmetric.

Let X be a orthogonality vector space in the sense of Rétz and Y be an
abelian group. A function f : X — Y is called orthogonally additive, if
flx+y)=f(z)+ f(y) for all z,y € X with = L y.

An orthogonally additive mapping can not be additive or linear in general.
For example the orthogonally additive mapping f : H — R defined on inner
product space H by f(x) = ||z||? is a quadratic function, since it satisfies
the quadratic functional equation

q(z +y) +q(x —y) = 2q(z) + 2q(y)

for all x,y € X.

Rétz in Corollary 7 of [1] investigated the structure of orthogonally ad-
ditive mappings and showed that any orthogonally additive mapping f is
of the form a + ¢, for a unique additive mapping a and a unique quadratic
mapping q.

Moreover he showed that if H is a real inner product space, then any
orthogonally additive mapping f : H — Y is of the form

f(@) = a(l|z[|*) + b(x) (1.1)

for all z € H, where a : R - Y and b : H — Y are additive mapping
uniquely determined by f. In this paper, we show that any orthogonally
additive isometry on an inner product space is an additive mapping.
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2. The result

Theorem 2.1. Let H be a real inner product space. If f: H — H is an
orthogonally additive mapping such that

1 @) = =]

for all x € H, then f is an additive mapping.
Proof. Let (.,.) denote the inner product of H. It follows from (1.1) that

l=I* = 1If @)
= (@), [(2))
= (a(llz]*) + b(x), a(llz]*) + b(x))
= Ja(l=I®)|* +2(a(llz]®), b(x)) + [Ib)]?

for all x € H.
Let r € Q. Then replacing x by rx we get
2
)| = rtflalla)®)[|” + 2r% (alll2]?), b)) + r*[lb(x) |* (2.1)

for all z € H. Dividing the equation (2.1) by r* we have

2
slel? = [lalllel?)|” + 27 ¢alllz]?), b(x)) + = lb(x)]?
for all z € H. Now taking limit as r — oo, we get

a([lz[1*) = 0, [lb()|| = [l

for all x € H.
For each t > 0, put = v/t||y|| "'y where 0 # y € H. Then z € H and
a(t) = a(tllyl 2 yl®) = a(||VEllul~'y]*) = a(l=]?) = 0.

Thus a(t) = 0 for all t > 0. Also since a is an additive mapping, so a is
odd. Therefore a(t) = —a(—t) = 0 for all ¢ < 0. This implies that a = 0 on
R. Thus f(xz) = b(x) for all z € H and f is an additive mapping. O

Proposition 2.2. Suppose that the functions f, a and b satisfy the equation
(1.1) forallx € H. Ifa:R — H and b: H — H are linear and f : H - H
1s bijective, then f is linear.

Proof. Suppose that a # 0 on R. Thus for 0 # a(1) € H, there exists a
0 # o € H such that f(xg) = —a(1). Then we have

—a(1) = f(zo) = f(z) = alllzol|*) + b(wo) = ||zo[IPa(1) + b(xo).
It follows that (1 + ||zo]|?)a(1) = —b(zo) and Then

a(l) = b(#%)

Therefore

J(@) = a(lle]*) + bla) = llalPa(1) + b(a) = 2*b( ||2) +b(x)
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for all z € H. So for x = %xo # 0 we have
1+ ([zo]? ) _ H 1+HI0H2 H ( —Zo ) (1-i-||960||2 )
£ (HiathEo) = [ Fiist ]| o (5 o) T O\ Tl 0
1Jrlll“0||2 H —To 1t [|zo | )
(H [zol2 70 7 + |wo]? 2ol 0

_ b( B 1—|&|-9U;B|T2H2x0 n 1+\\I0H2x0) = b(0) = 0.

[ENR

This contradicts the injectivity of f. Thus a = 0 on R and then f = b is
linear. 0
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