

ON ORTHOGONALLY ADDITIVE ISOMETRIES

SAYED KHALIL EKRAMI

Department of Mathematics, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran. khalil.ekrami@gmail.com, ekrami@pnu.ac.ir

ABSTRACT. Let H be a real inner product space. In this paper, we show that if a mapping $f : H \to H$ satisfies

 $f(x + y) = f(x) + f(y)$

for all $x, y \in H$ with $x \perp y$ and

 $|| f(x) || = ||x||$

for all $x, \in H$, then f is an additive mapping.

1. INTRODUCTION

There are several orthogonality notions on a real normed space such as Birkhoff-James, isosceles, Phythagorean, Roberts and Diminnie ([\[3\]](#page-3-0)). J. Rätz [\[1\]](#page-3-1) introduced an abstract definition of orthogonality on a real vector space by using four axioms. Let us recall the orthogonality in the sense of Rätz.

Definition 1.1. Suppose X is a real vector space with dim $X \geq 2$ and \perp is a binary relation on X with the following properties:

- (O_1) totality of \bot for zero: $x \bot 0$ and $0 \bot x$ for all $x \in X$;
- (O_2) independence: if $x, y \in X \setminus \{0\}$ and $x \perp y$, then x, y are linearly independent;
- (O_3) homogeneity: if $x, y \in X, x \perp y$, then $\alpha x \perp \beta y$ for all $\alpha, \beta \in \mathbb{R}$;

¹⁹⁹¹ Mathematics Subject Classification. Primary 39B55; Secondary 39B12.

Key words and phrases. Orthogonally additive mapping, additive mapping, isometry, inner product space.

2 S. KH. EKRAMI

 (O_4) the Thalesian property: if P is a 2-dimensional subspace of X, for any $x \in P$ and any $\lambda \in \mathbb{R}^+$, there exists $y \in P$ such that $x \perp y$ and $x + y \perp \lambda x - y.$

The pair (X, \perp) is called an orthogonality space. By an orthogonality normed space we mean an orthogonality space equipped with a norm.

Some interesting examples of orthogonality spaces are

- (a) Any real vector space X can be made into a orthogonality space with the trivial orthogonality defined on X by
	- (i) for all $x \in X$, $x \perp 0$ and $0 \perp x$,
	- (ii) for all $x, y \in X \setminus \{0\}$, $x \perp y$ if and only if x, y are linearly independent.
- (b) Any inner product space $(X, \langle \cdot, \cdot \rangle)$ is an orthogonality space with the ordinary orthogonality given by $x \perp y$ if and only if $\langle x, y \rangle = 0$.
- (c) Any normed space $(X, \|\cdot\|)$ can be made into a orthogonality space with the Birkhoff-James orthogonality defined by $x \perp y$ if and only if $||x|| \le ||x + \lambda y||$ for all $\lambda \in \mathbb{R}$.

The relation \bot is called symmetric if $x \perp y$ implies that $y \perp x$ for all $x, y \in X$. Clearly examples (a) and (b) are symmetric but example (c) is not. It is remarkable to note that a real normed space of dimension greater than 2 is an inner product space if and only if the Birkhoff-James orthogonality is symmetric.

Let X be a orthogonality vector space in the sense of Rätz and Y be an abelian group. A function $f: X \to Y$ is called *orthogonally additive*, if $f(x + y) = f(x) + f(y)$ for all $x, y \in X$ with $x \perp y$.

An orthogonally additive mapping can not be additive or linear in general. For example the orthogonally additive mapping $f : H \to \mathbb{R}$ defined on inner product space H by $f(x) = ||x||^2$ is a quadratic function, since it satisfies the quadratic functional equation

$$
q(x + y) + q(x - y) = 2q(x) + 2q(y)
$$

for all $x, y \in X$.

Rätz in Corollary 7 of $[1]$ investigated the structure of orthogonally additive mappings and showed that any orthogonally additive mapping f is of the form $a + q$, for a unique additive mapping a and a unique quadratic mapping q .

Moreover he showed that if H is a real inner product space, then any orthogonally additive mapping $f : H \to Y$ is of the form

$$
f(x) = a(||x||^2) + b(x)
$$
\n(1.1)

for all $x \in H$, where $a : \mathbb{R} \to Y$ and $b : H \to Y$ are additive mapping uniquely determined by f . In this paper, we show that any orthogonally additive isometry on an inner product space is an additive mapping.

2. The result

Theorem 2.1. Let H be a real inner product space. If $f : H \to H$ is an orthogonally additive mapping such that

$$
||f(x)|| = ||x||
$$

for all $x \in H$, then f is an additive mapping.

Proof. Let $\langle ., .\rangle$ denote the inner product of H. It follows from (1.1) that

$$
||x||2 = ||f(x)||2
$$

= $\langle f(x), f(x) \rangle$
= $\langle a(||x||2) + b(x), a(||x||2) + b(x) \rangle$
= $||a(||x||2)||2 + 2\langle a(||x||2), b(x) \rangle + ||b(x)||2$

for all $x \in H$.

Let $r \in \mathbb{Q}$. Then replacing x by rx we get

$$
r^{2}||x||^{2} = r^{4}||a(||x||^{2})||^{2} + 2r^{3}\langle a(||x||^{2}), b(x)\rangle + r^{2}||b(x)||^{2}
$$
 (2.1)

for all $x \in H$. Dividing the equation (2.1) by $r⁴$ we have

$$
\frac{1}{r^2}||x||^2 = ||a(||x||^2)||^2 + 2\frac{1}{r}\langle a(||x||^2), b(x)\rangle + \frac{1}{r^2}||b(x)||^2
$$

for all $x \in H$. Now taking limit as $r \to \infty$, we get

$$
a(\|x\|^2) = 0, \quad \|b(x)\| = \|x\|
$$

for all $x \in H$.

$$
\text{For each } t > 0 \text{, put } x = \sqrt{t} \|y\|^{-1} y \text{ where } 0 \neq y \in H. \text{ Then } x \in H \text{ and}
$$

$$
a(t) = a(t||y||^{-2}||y||^2) = a(||\sqrt{t}||y||^{-1}y||^2) = a(||x||^2) = 0.
$$

Thus $a(t) = 0$ for all $t > 0$. Also since a is an additive mapping, so a is odd. Therefore $a(t) = -a(-t) = 0$ for all $t < 0$. This implies that $a = 0$ on R. Thus $f(x) = b(x)$ for all $x \in H$ and f is an additive mapping.

Proposition 2.2. Suppose that the functions f , a and b satisfy the equation (1.1) for all $x \in H$. If $a : \mathbb{R} \to H$ and $b : H \to H$ are linear and $f : H \to H$ is bijective, then f is linear.

Proof. Suppose that $a \neq 0$ on R. Thus for $0 \neq a(1) \in H$, there exists a $0 \neq x_0 \in H$ such that $f(x_0) = -a(1)$. Then we have

$$
-a(1) = f(x_0) = f(x) = a(||x_0||^2) + b(x_0) = ||x_0||^2 a(1) + b(x_0).
$$

It follows that $(1 + ||x_0||^2)a(1) = -b(x_0)$ and Then

$$
a(1) = b\left(\frac{-x_0}{1 + \|x_0\|^2}\right).
$$

Therefore

$$
f(x) = a(||x||^2) + b(x) = ||x||^2 a(1) + b(x) = ||x||^2 b\left(\frac{-x_0}{1 + ||x_0||^2}\right) + b(x)
$$

for all $x \in H$. So for $x = \frac{1 + ||x_0||^2}{||x_0||^2}$ $\frac{f\|x_0\|^2}{\|x_0\|^2}x_0 \neq 0$ we have

$$
f\left(\frac{1+\|x_0\|^2}{\|x_0\|^2}x_0\right) = \left\|\frac{1+\|x_0\|^2}{\|x_0\|^2}x_0\right\|^2 b\left(\frac{-x_0}{1+\|x_0\|^2}\right) + b\left(\frac{1+\|x_0\|^2}{\|x_0\|^2}x_0\right)
$$

$$
= b\left(\left\|\frac{1+\|x_0\|^2}{\|x_0\|^2}x_0\right\|^2 \frac{-x_0}{1+\|x_0\|^2} + \frac{1+\|x_0\|^2}{\|x_0\|^2}x_0\right)
$$

$$
= b\left(-\frac{1+\|x_0\|^2}{\|x_0\|^2}x_0 + \frac{1+\|x_0\|^2}{\|x_0\|^2}x_0\right) = b(0) = 0.
$$

This contradicts the injectivity of f. Thus $a = 0$ on R and then $f = b$ is \Box

REFERENCES

- 1. J. Rätz, On orthogonally additive mappings, Aequationes Math. 28 (1985), 35-49.
- 2. J. Rätz, Gy. Szabó, On orthogonally additive mappings IV, Aequationes Math. 38 (1989), 73–85.
- 3. J. Sikorska, Orthogonalities and functional equations, Aequationes Math. 89 2 (2015), 215–277.