

EXISTENCE AND CONVERGENCE OF FIXED POINT RESULTS FOR NONCYCLIC CONTRACTIONS IN REFLEXIVE BANACH SPACES

AKRAM SAFARI-HAFSHEJANI

Department of Pure Mathematics, Payame Noor University (PNU), P. O. Box: 19395-3697, Tehran, Iran asafari@pnu.ac.ir

ABSTRACT. In this paper, we study the existence of a fixed point for a noncyclic contraction map in a reflexive Banach space. The presented results extend and improve some recent results in the literature.

1. INTRODUCTION

Let A and B be nonempty subsets of a metric space (X, d). A self mapping $T : A \cup B \to A \cup B$ is said to be *noncyclic* provided that $T(A) \subseteq A$ and $T(B) \subseteq B$. We say that $(x, y) \in A \times B$ is an *optimal pair of fixed points* of the noncyclic mapping T provided that

Tx = x, Ty = y and d(x, y) = d(A, B),

where $d(A, B) = \inf\{d(a, b) : a \in A, b \in B\}.$

In 2005, Anthony Eldred, Kirk and Veeremani [2] introduced noncyclic mappings and studied the existence of an optimal pair of fixed points of a given mapping.

In 2013, Abkar and Gabeleh [1] introduced noncyclic contraction mappings. As a result of theorem 2.7 of [6], for these mappings, the authors presented the following existence theorem.

²⁰²⁰ Mathematics Subject Classification. Primary 47H10; Secondary 54H25

Key words and phrases. Fixed point, Noncyclic contractions, Reflexive Banach spaces.

A. SAFARI

Theorem 1.1. Let A and B be nonempty convex subsets of a uniformly convex Banach space X such that A is closed and let $T : A \cup B \to A \cup B$ be a noncyclic contraction map that is, there exists $c \in [0, 1)$ such that

$$d(Tx, Ty) \le cd(x, y) + (1 - c)d(A, B),$$

for all $x \in A$ and $y \in B$. For $x_0 \in A$, define $x_{n+1} := Tx_n$ for each $n \ge 0$. Then there exists a unique fixed point $x \in A$ such that $x_n \to x$.

In this paper, we study the existence of a fixed point for a noncyclic contraction map in a reflexive Banach space.

Here, we recall a definition and fact will be used in the next section.

Definition 1.2. [5] A Banach space X is said to be strictly convex if the following implication holds for all $x, y, p \in X$ and R > 0:

$$\left. \begin{array}{l} \|x-p\| \leq R \\ \|y-p\| \leq R \\ x \neq y \end{array} \right\} \ \Rightarrow \ \|\frac{x+y}{2} - p\| < R.$$

Theorem 1.3. [6] Let A and B be nonempty closed subsets of a complete metric space (X, d). Let T be a noncyclic mapping on $A \cup B$ satisfying

$$d(Tx, Ty) \le cd(x, y),$$

for each $x \in A$ and $y \in B$ where $c \in [0, 1)$. Then T has a unique fixed point x in $A \cap B$ and the Picard iteration $\{T^n x_0\}$ converges to x for any starting point $x_0 \in A \cup B$.

2. Main results

The following results will be needed to prove the main theorems of this section.

Lemma 2.1. Let A and B be nonempty subsets of the metric space (X, d)and let $T : A \cup B \to A \cup B$ be a noncyclic contraction map. For $x_0 \in A$, define $x_{n+1} := Tx_n$ and for $y_0 \in B$, define $y_{n+1} := Ty_n$ for each $n \ge 0$. Then $d(x_n, y_n) \to d(A, B)$ as $n \to \infty$.

The next two results show the existence of a fixed point for a noncyclic contraction map in a reflexive Banach space.

Theorem 2.2. Let A and B be nonempty weakly closed subsets of a reflexive Banach space X and let $T : A \cup B \to A \cup B$ be a noncyclic contraction map. Then there exists $(x, y) \in A \times B$ such that ||x - y|| = d(A, B).

Proof. If d(A, B) = 0, the result follows from Theorem 1.3. So, we assume that d(A, B) > 0. For $x_0 \in A$, define $x_{n+1} := Tx_n$ and for $y_0 \in A$, define $y_{n+1} := Ty_n$ for each $n \ge 0$. By Lemma 2.2 of [6], the sequences $\{x_n\}$ and $\{y_n\}$ are bounded. As X is reflexive and A is weakly closed, the sequence $\{x_n\}$ has a subsequence $\{x_{n_k}\}$ with $x_{n_k} \xrightarrow{w} x \in A$. As $\{y_{n_k}\}$ is bounded and B is weakly closed, we can say, without loss of generality, that $y_{n_k} \xrightarrow{w} y \in B$

as $k \to \infty$. Since $x_{n_k} - y_{n_k} \xrightarrow{w} x - y \neq 0$ as $k \to \infty$, there exists a bounded linear functional $f: X \to [0, +\infty)$ such that

$$||f|| = 1$$
 and $f(x - y) = ||x - y||.$

For each $k \geq 1$, we have

$$|f(x_{n_k} - y_{n_k})| \le ||f|| ||x_{n_k} - y_{n_k}|| = ||x_{n_k} - y_{n_k}||.$$

Since

$$\lim_{k \to \infty} f(x_{n_k} - y_{n_k}) = f(x - y) = ||x - y||,$$

it follows from Lemma 2.1 that

$$||x - y|| = \lim_{k \to \infty} |f(x_{n_k} - y_{n_k})| \le \lim_{k \to \infty} ||x_{n_k} - y_{n_k}|| = d(A, B).$$
$$||x - y|| = d(A, B).$$

Thus ||x - y|| = d(A, B).

Definition 2.3. [4] A mapping $F: C \subseteq X \to X$ is called demiclosed at y if, whenever $x_n \xrightarrow{w} x \in C$ and $Fx_n \xrightarrow{s} y \in X$, it follows that Fx = y.

Let I is the identity map, $I - T : A \cup B \to X$ is demiclosed at 0 if whenever x_n is a sequence in $A \cup B$ such that $x_{n_k} \xrightarrow{w} x \in A \cup B$ and $(I - T)x_n \xrightarrow{s} 0$ as $n \to \infty$, then (I - T)x = 0.

Theorem 2.4. Let A and B be nonempty subsets of a reflexive Banach space X such that A is weakly closed and let $T: A \cup B \to A \cup B$ be a noncyclic contraction map. Then there exists $x \in A$ such that Tx = x provided one of the following conditions is satisfied:

- (a) T is weakly continuous on A;
- (b) $I T : A \cup B \to X$ is demiclosed at 0.

Proof. If d(A, B) = 0, the result follows from Theorem 1.3. So, we assume that d(A, B) > 0. For $x_0 \in A$, define $x_{n+1} := Tx_n$ for each $n \ge 0$. By Lemma 2.2 of [6], the sequence $\{x_n\}$ is bounded. As X is reflexive and A is weakly closed, the sequence $\{x_n\}$ has a subsequence $\{x_{n_k}\}$ with $x_{n_k} \xrightarrow{w} x \in$ A as $k \to \infty$.

(a) Since T is weakly continuous on A and $T(A) \subseteq A$, we have $x_{n_k+1} \xrightarrow{w}$ $Tx \in A$ as $k \to \infty$. Thus $x_{n_k} - x_{n_k+1} \xrightarrow{w} x - Tx$ as $k \to \infty$. We assume the contrary, $x - Tx \neq 0$. Since $x_{n_k} - x_{n_k+1} \xrightarrow{w} x - Tx \neq 0$ as $k \to \infty$, there exists a bounded linear functional $f: X \to [0, +\infty)$ such that

$$||f|| = 1$$
 and $f(x - Tx) = ||x - Tx||$.

For each $k \geq 1$, we have

$$|f(x_{n_k} - x_{n_k+1})| \le ||f|| ||x_{n_k} - x_{n_k+1}|| = ||x_{n_k} - x_{n_k+1}||.$$

Since

$$\lim_{k \to \infty} f(x_{n_k} - x_{n_k+1}) = f(x - Tx) = ||x - Tx||,$$

it follows from Lemma 2.1 that

$$||x - Tx|| = \lim_{k \to \infty} |f(x_{n_k} - x_{n_k+1})| \le \lim_{k \to \infty} ||x_{n_k} - x_{n_k+1}|| = 0.$$

Thus ||x - Tx|| = 0, a contradiction.

(b) By Lemma 2.1, we have

$$||x_{n_k} - Tx_{n_k}|| = ||x_{n_k} - x_{n_k+1}|| \to 0$$

as $k \to \infty$. So $(I - T)x_{n_k} \xrightarrow{s} 0$ as $k \to \infty$. As $I - T : A \cup B \to X$ is demiclosed at 0, it follows that (I - T)x = 0. Hence Tx = x.

The next result show the existence and uniqueness of a best proximity point for a cyclic contraction map in a reflexive and strictly Banach space. This theorem guarantees the uniqueness in Theorem 3.5 of [3].

Theorem 2.5. Let A and B be nonempty closed and convex subsets of a reflexive and strictly convex Banach space X and let $T : A \cup B \to A \cup B$ be a noncyclic contraction map. If $(A - A) \cap (B - B) = \{0\}$, then there exists a unique optimal pair of fixed points $(x, y) \in A \times B$ for T.

Proof. If d(A, B) = 0, the result follows from Theorem 1.3. So, we assume that d(A, B) > 0. Since A is closed and convex, it is weakly closed. It follows from Theorem 2.2 that there exists $(x, y) \in A \times B$ such that ||x - y|| = d(A, B). To show the uniqueness of (x, y), suppose that there exists another $(x', y') \in A \times B$ such that ||x' - y'|| = d(A, B). As $(A - A) \cap (B - B) = \{0\}$ we conclude that $x - x' \neq y - y'$ and so $x - y \neq x' - y'$. Since A and B are both convex, it follows from the strict convexity of X that

$$\left\|\frac{x+x'}{2} - \frac{y+y'}{2}\right\| = \left\|\frac{x-y+x'-y'}{2} - 0\right\| < d(A,B),$$

a contradiction. As

$$||Tx - Ty|| = ||x - y|| = d(A, B),$$

we conclude, from the uniqueness of (x, y), that (Tx, Ty) = (x, y). Thus Tx = x and Ty = y.

References

- 1. A. Abkar, and M. Gabeleh, *Proximal quasi-normal structure and a best proximity point theorem*, J. Nonlinear Convex Anal., **14** (4) (2013) 653-659.
- A. Anthony Eldred, W. A. Kirk, and P. Veeramani, Proximal normal structure and relatively nonexpansive mappings, Studia Math., 171 (3) (2005) 283-293.
- A. Fernández-León, and M. Gabeleh, Best proximity pair theorems for noncyclic mappings in Banach and metric spaces. Fixed Point Theory, 17(1) (2016), 63-84.
- T. M. Gallagher, The demiclosedness principle for mean nonexpansive mappings, J. Math. Anal. Appl., 439 (2) (2016) 832-842.
- 5. K. Goebel, and W.A. Kirk, *Topics in metric fixed point theory*, Cambridge University Press, 1990.
- A. Safari-Hafshejani, A. Amini-Harandi, and M. Fakhar, Best proximity points and fixed points results for non-cyclic and cyclic Fisher quasi-contractions, Numer. Funct. Anal. Optim., 40 (5) (2019) 603-619.

4