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Abstract. In this paper, we study the existence of a fixed point for a
noncyclic contraction map in a reflexive Banach space. The presented
results extend and improve some recent results in the literature.

1. Introduction

Let A and B be nonempty subsets of a metric space (X, d). A self mapping
T : A ∪ B → A ∪ B is said to be noncyclic provided that T (A) ⊆ A and
T (B) ⊆ B. We say that (x, y) ∈ A×B is an optimal pair of fixed points of
the noncyclic mapping T provided that

Tx = x, Ty = y and d(x, y) = d(A,B),

where d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}.
In 2005, Anthony Eldred, Kirk and Veeremani [2] introduced noncyclic

mappings and studied the existence of an optimal pair of fixed points of a
given mapping.

In 2013, Abkar and Gabeleh [1] introduced noncyclic contraction map-
pings. As a result of theorem 2.7 of [6], for these mappings, the authors
presented the following existence theorem.
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Theorem 1.1. Let A and B be nonempty convex subsets of a uniformly
convex Banach space X such that A is closed and let T : A∪B → A∪B be
a noncyclic contraction map that is, there exists c ∈ [0, 1) such that

d(Tx, Ty) ≤ cd(x, y) + (1− c)d(A,B),

for all x ∈ A and y ∈ B. For x0 ∈ A, define xn+1 := Txn for each n ≥ 0.
Then there exists a unique fixed point x ∈ A such that xn → x.

In this paper, we study the existence of a fixed point for a noncyclic
contraction map in a reflexive Banach space.

Here, we recall a definition and fact will be used in the next section.

Definition 1.2. [5] A Banach space X is said to be strictly convex if the
following implication holds for all x, y, p ∈ X and R > 0:

‖x− p‖ ≤ R
‖y − p‖ ≤ R

x 6= y

 ⇒ ‖x + y

2
− p‖ < R.

Theorem 1.3. [6] Let A and B be nonempty closed subsets of a complete
metric space (X, d). Let T be a noncyclic mapping on A ∪B satisfying

d(Tx, Ty) ≤ cd(x, y),

for each x ∈ A and y ∈ B where c ∈ [0, 1). Then T has a unique fixed point
x in A ∩B and the Picard iteration {Tnx0} converges to x for any starting
point x0 ∈ A ∪B.

2. Main results

The following results will be needed to prove the main theorems of this
section.

Lemma 2.1. Let A and B be nonempty subsets of the metric space (X, d)
and let T : A ∪ B → A ∪ B be a noncyclic contraction map. For x0 ∈ A,
define xn+1 := Txn and for y0 ∈ B, define yn+1 := Tyn for each n ≥ 0.
Then d(xn, yn)→ d(A,B) as n→∞.

The next two results show the existence of a fixed point for a noncyclic
contraction map in a reflexive Banach space.

Theorem 2.2. Let A and B be nonempty weakly closed subsets of a reflexive
Banach space X and let T : A∪B → A∪B be a noncyclic contraction map.
Then there exists (x, y) ∈ A×B such that ‖x− y‖ = d(A,B).

Proof. If d(A,B) = 0, the result follows from Theorem 1.3. So, we assume
that d(A,B) > 0. For x0 ∈ A, define xn+1 := Txn and for y0 ∈ A, define
yn+1 := Tyn for each n ≥ 0. By Lemma 2.2 of [6], the sequences {xn} and
{yn} are bounded. As X is reflexive and A is weakly closed, the sequence

{xn} has a subsequence{xnk
} with xnk

w−→ x ∈ A. As {ynk
} is bounded and

B is weakly closed, we can say, without loss of generality, that ynk

w−→ y ∈ B
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as k →∞. Since xnk
− ynk

w−→ x− y 6= 0 as k →∞, there exists a bounded
linear functional f : X → [0,+∞) such that

‖f‖ = 1 and f(x− y) = ‖x− y‖.

For each k ≥ 1, we have

|f(xnk
− ynk

)| ≤ ‖f‖‖xnk
− ynk

‖ = ‖xnk
− ynk

‖.

Since

lim
k→∞

f(xnk
− ynk

) = f(x− y) = ‖x− y‖,

it follows from Lemma 2.1 that

‖x− y‖ = lim
k→∞

|f(xnk
− ynk

)| ≤ lim
k→∞

‖xnk
− ynk

‖ = d(A,B).

Thus ‖x− y‖ = d(A,B). �

Definition 2.3. [4] A mapping F : C ⊆ X → X is called demiclosed at y

if, whenever xn
w−→ x ∈ C and Fxn

s−→ y ∈ X, it follows that Fx = y.

Let I is the identity map, I−T : A∪B → X is demiclosed at 0 if whenever

xn is a sequence in A ∪ B such that xnk

w−→ x ∈ A ∪ B and (I − T )xn
s−→ 0

as n→∞, then (I − T )x = 0.

Theorem 2.4. Let A and B be nonempty subsets of a reflexive Banach space
X such that A is weakly closed and let T : A ∪ B → A ∪ B be a noncyclic
contraction map. Then there exists x ∈ A such that Tx = x provided one of
the following conditions is satisfied:

(a) T is weakly continuous on A;
(b) I − T : A ∪B → X is demiclosed at 0.

Proof. If d(A,B) = 0, the result follows from Theorem 1.3. So, we assume
that d(A,B) > 0. For x0 ∈ A, define xn+1 := Txn for each n ≥ 0. By
Lemma 2.2 of [6], the sequence {xn} is bounded. As X is reflexive and A is

weakly closed, the sequence {xn} has a subsequence {xnk
} with xnk

w−→ x ∈
A as k →∞.

(a) Since T is weakly continuous on A and T (A) ⊆ A, we have xnk+1
w−→

Tx ∈ A as k →∞. Thus xnk
− xnk+1

w−→ x− Tx as k →∞. We assume the

contrary, x − Tx 6= 0. Since xnk
− xnk+1

w−→ x − Tx 6= 0 as k → ∞, there
exists a bounded linear functional f : X → [0,+∞) such that

‖f‖ = 1 and f(x− Tx) = ‖x− Tx‖.

For each k ≥ 1, we have

|f(xnk
− xnk+1)| ≤ ‖f‖‖xnk

− xnk+1‖ = ‖xnk
− xnk+1‖.

Since

lim
k→∞

f(xnk
− xnk+1) = f(x− Tx) = ‖x− Tx‖,
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it follows from Lemma 2.1 that

‖x− Tx‖ = lim
k→∞

|f(xnk
− xnk+1)| ≤ lim

k→∞
‖xnk

− xnk+1‖ = 0.

Thus ‖x− Tx‖ = 0, a contradiction.
(b) By Lemma 2.1, we have

‖xnk
− Txnk

‖ = ‖xnk
− xnk+1‖ → 0

as k → ∞. So (I − T )xnk

s−→ 0 as k → ∞. As I − T : A ∪ B → X is
demiclosed at 0, it follows that (I − T )x = 0. Hence Tx = x. �

The next result show the existence and uniqueness of a best proximity
point for a cyclic contraction map in a reflexive and strictly Banach space.
This theorem guarantees the uniqueness in Theorem 3.5 of [3].

Theorem 2.5. Let A and B be nonempty closed and convex subsets of a
reflexive and strictly convex Banach space X and let T : A ∪B → A ∪B be
a noncyclic contraction map. If (A−A) ∩ (B −B) = {0}, then there exists
a unique optimal pair of fixed points (x, y) ∈ A×B for T .

Proof. If d(A,B) = 0, the result follows from Theorem 1.3. So, we assume
that d(A,B) > 0. Since A is closed and convex, it is weakly closed. It follows
from Theorem 2.2 that there exists (x, y) ∈ A × B such that ‖x − y‖ =
d(A,B). To show the uniqueness of (x, y), suppose that there exists another
(x′, y′) ∈ A×B such that ‖x′− y′‖ = d(A,B). As (A−A)∩ (B −B) = {0}
we conclude that x− x′ 6= y− y′ and so x− y 6= x′− y′ . Since A and B are
both convex, it follows from the strict convexity of X that

‖x + x′

2
− y + y′

2
‖ = ‖x− y + x′ − y′

2
− 0‖ < d(A,B),

a contradiction. As

‖Tx− Ty‖ = ‖x− y‖ = d(A,B),

we conclude, from the uniqueness of (x, y), that (Tx, Ty) = (x, y). Thus
Tx = x and Ty = y. �
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