

EXISTENCE AND CONVERGENCE OF FIXED POINT RESULTS FOR NONCYCLIC CONTRACTIONS IN REFLEXIVE BANACH SPACES

AKRAM SAFARI-HAFSHEJANI

Department of Pure Mathematics, Payame Noor University (PNU), P. O. Box: 19395-3697, Tehran, Iran asafari@pnu.ac.ir

ABSTRACT. In this paper, we study the existence of a fixed point for a noncyclic contraction map in a reflexive Banach space. The presented results extend and improve some recent results in the literature.

1. INTRODUCTION

Let A and B be nonempty subsets of a metric space (X, d) . A self mapping $T: A \cup B \rightarrow A \cup B$ is said to be *noncyclic* provided that $T(A) \subseteq A$ and $T(B) \subseteq B$. We say that $(x, y) \in A \times B$ is an optimal pair of fixed points of the noncyclic mapping T provided that

 $Tx = x$, $Ty = y$ and $d(x, y) = d(A, B)$,

where $d(A, B) = \inf \{d(a, b) : a \in A, b \in B\}.$

In 2005, Anthony Eldred, Kirk and Veeremani [\[2\]](#page-3-0) introduced noncyclic mappings and studied the existence of an optimal pair of fixed points of a given mapping.

In 2013, Abkar and Gabeleh [\[1\]](#page-3-1) introduced noncyclic contraction mappings. As a result of theorem 2.7 of $[6]$, for these mappings, the authors presented the following existence theorem.

²⁰²⁰ Mathematics Subject Classification. Primary 47H10; Secondary 54H25

Key words and phrases. Fixed point, Noncyclic contractions, Reflexive Banach spaces.

Theorem 1.1. Let A and B be nonempty convex subsets of a uniformly convex Banach space X such that A is closed and let $T : A \cup B \rightarrow A \cup B$ be a noncyclic contraction map that is, there exists $c \in [0,1)$ such that

$$
d(Tx, Ty) \le cd(x, y) + (1 - c)d(A, B),
$$

for all $x \in A$ and $y \in B$. For $x_0 \in A$, define $x_{n+1} := Tx_n$ for each $n \geq 0$. Then there exists a unique fixed point $x \in A$ such that $x_n \to x$.

In this paper, we study the existence of a fixed point for a noncyclic contraction map in a reflexive Banach space.

Here, we recall a definition and fact will be used in the next section.

Definition 1.2. [\[5\]](#page-3-3) A Banach space X is said to be strictly convex if the following implication holds for all $x, y, p \in X$ and $R > 0$:

$$
\begin{array}{c}\n||x-p|| \le R \\
||y-p|| \le R \\
x \neq y\n\end{array}\n\bigg\} \Rightarrow \|\frac{x+y}{2} - p\| < R.
$$

Theorem 1.3. [\[6\]](#page-3-2) Let A and B be nonempty closed subsets of a complete metric space (X, d) . Let T be a noncyclic mapping on $A \cup B$ satisfying

$$
d(Tx,Ty) \leq cd(x,y),
$$

for each $x \in A$ and $y \in B$ where $c \in [0,1)$. Then T has a unique fixed point x in $A \cap B$ and the Picard iteration $\{T^n x_0\}$ converges to x for any starting point $x_0 \in A \cup B$.

2. Main results

The following results will be needed to prove the main theorems of this section.

Lemma 2.1. Let A and B be nonempty subsets of the metric space (X, d) and let $T : A \cup B \rightarrow A \cup B$ be a noncyclic contraction map. For $x_0 \in A$, define $x_{n+1} := Tx_n$ and for $y_0 \in B$, define $y_{n+1} := Ty_n$ for each $n \geq 0$. Then $d(x_n, y_n) \to d(A, B)$ as $n \to \infty$.

The next two results show the existence of a fixed point for a noncyclic contraction map in a reflexive Banach space.

Theorem 2.2. Let A and B be nonempty weakly closed subsets of a reflexive Banach space X and let $T : A \cup B \rightarrow A \cup B$ be a noncyclic contraction map. Then there exists $(x, y) \in A \times B$ such that $||x - y|| = d(A, B)$.

Proof. If $d(A, B) = 0$, the result follows from Theorem [1.3.](#page-1-0) So, we assume that $d(A, B) > 0$. For $x_0 \in A$, define $x_{n+1} := Tx_n$ and for $y_0 \in A$, define $y_{n+1} := Ty_n$ for each $n \geq 0$. By Lemma 2.2 of [\[6\]](#page-3-2), the sequences $\{x_n\}$ and ${y_n}$ are bounded. As X is reflexive and A is weakly closed, the sequence ${x_{n}}$ has a subsequence ${x_{n_k}}$ with $x_{n_k} \stackrel{w}{\rightarrow} x \in A$. As ${y_{n_k}}$ is bounded and B is weakly closed, we can say, without loss of generality, that $y_{n_k} \stackrel{w}{\to} y \in B$

as $k \to \infty$. Since $x_{n_k} - y_{n_k} \xrightarrow{w} x - y \neq 0$ as $k \to \infty$, there exists a bounded linear functional $f: X \to [0, +\infty)$ such that

$$
||f|| = 1
$$
 and $f(x - y) = ||x - y||$.

For each $k \geq 1$, we have

$$
|f(x_{n_k} - y_{n_k})| \le ||f|| ||x_{n_k} - y_{n_k}|| = ||x_{n_k} - y_{n_k}||.
$$

Since

$$
\lim_{k \to \infty} f(x_{n_k} - y_{n_k}) = f(x - y) = ||x - y||,
$$

it follows from Lemma [2.1](#page-1-1) that

$$
||x - y|| = \lim_{k \to \infty} |f(x_{n_k} - y_{n_k})| \le \lim_{k \to \infty} ||x_{n_k} - y_{n_k}|| = d(A, B).
$$

Thus $||x - y|| = d(A, B).$

Definition 2.3. [\[4\]](#page-3-4) A mapping $F: C \subseteq X \rightarrow X$ is called demiclosed at y if, whenever $x_n \stackrel{w}{\to} x \in C$ and $Fx_n \stackrel{s}{\to} y \in X$, it follows that $Fx = y$.

Let I is the identity map, $I-T : A \cup B \to X$ is demiclosed at 0 if whenever x_n is a sequence in $A \cup B$ such that $x_{n_k} \stackrel{w}{\to} x \in A \cup B$ and $(I - T)x_n \stackrel{s}{\to} 0$ as $n \to \infty$, then $(I - T)x = 0$.

Theorem 2.4. Let A and B be nonempty subsets of a reflexive Banach space X such that A is weakly closed and let $T : A \cup B \rightarrow A \cup B$ be a noncyclic contraction map. Then there exists $x \in A$ such that $Tx = x$ provided one of the following conditions is satisfied:

- (a) T is weakly continuous on A ;
- (b) $I-T: A\cup B\rightarrow X$ is demiclosed at 0.

Proof. If $d(A, B) = 0$, the result follows from Theorem [1.3.](#page-1-0) So, we assume that $d(A, B) > 0$. For $x_0 \in A$, define $x_{n+1} := Tx_n$ for each $n \geq 0$. By Lemma 2.2 of $[6]$, the sequence $\{x_n\}$ is bounded. As X is reflexive and A is weakly closed, the sequence $\{x_n\}$ has a subsequence $\{x_{n_k}\}$ with $x_{n_k} \stackrel{w}{\rightarrow} x \in$ A as $k \to \infty$.

(a) Since T is weakly continuous on A and $T(A) \subseteq A$, we have $x_{n_k+1} \stackrel{w}{\rightarrow}$ $Tx \in A$ as $k \to \infty$. Thus $x_{n_k} - x_{n_k+1} \xrightarrow{w} x - Tx$ as $k \to \infty$. We assume the contrary, $x - Tx \neq 0$. Since $x_{n_k} - x_{n_k+1} \stackrel{w}{\rightarrow} x - Tx \neq 0$ as $k \rightarrow \infty$, there exists a bounded linear functional $f : X \to [0, +\infty)$ such that

$$
||f|| = 1
$$
 and $f(x - Tx) = ||x - Tx||$.

For each $k \geq 1$, we have

$$
|f(x_{n_k} - x_{n_k+1})| \le ||f|| ||x_{n_k} - x_{n_k+1}|| = ||x_{n_k} - x_{n_k+1}||.
$$

Since

$$
\lim_{k \to \infty} f(x_{n_k} - x_{n_k+1}) = f(x - Tx) = ||x - Tx||,
$$

it follows from Lemma [2.1](#page-1-1) that

$$
||x - Tx|| = \lim_{k \to \infty} |f(x_{n_k} - x_{n_k+1})| \le \lim_{k \to \infty} ||x_{n_k} - x_{n_k+1}|| = 0.
$$

Thus $||x - Tx|| = 0$, a contradiction.

(b) By Lemma [2.1,](#page-1-1) we have

$$
||x_{n_k} - Tx_{n_k}|| = ||x_{n_k} - x_{n_k+1}|| \to 0
$$

as $k \to \infty$. So $(I - T)x_{n_k} \stackrel{s}{\to} 0$ as $k \to \infty$. As $I - T : A \cup B \to X$ is demiclosed at 0, it follows that $(I - T)x = 0$. Hence $Tx = x$.

The next result show the existence and uniqueness of a best proximity point for a cyclic contraction map in a reflexive and strictly Banach space. This theorem guarantees the uniqueness in Theorem 3.5 of [\[3\]](#page-3-5).

Theorem 2.5. Let A and B be nonempty closed and convex subsets of a reflexive and strictly convex Banach space X and let $T : A \cup B \rightarrow A \cup B$ be a noncyclic contraction map. If $(A - A) \cap (B - B) = \{0\}$, then there exists a unique optimal pair of fixed points $(x, y) \in A \times B$ for T.

Proof. If $d(A, B) = 0$, the result follows from Theorem [1.3.](#page-1-0) So, we assume that $d(A, B) > 0$. Since A is closed and convex, it is weakly closed. It follows from Theorem [2.2](#page-1-2) that there exists $(x, y) \in A \times B$ such that $||x - y|| =$ $d(A, B)$. To show the uniqueness of (x, y) , suppose that there exists another $(x', y') \in A \times B$ such that $||x' - y'|| = d(A, B)$. As $(A - A) \cap (B - B) = \{0\}$ we conclude that $x - x' \neq y - y'$ and so $x - y \neq x' - y'$. Since A and B are both convex, it follows from the strict convexity of X that

$$
\|\frac{x+x'}{2}-\frac{y+y'}{2}\|=\|\frac{x-y+x'-y'}{2}-0\|
$$

a contradiction. As

$$
||Tx - Ty|| = ||x - y|| = d(A, B),
$$

we conclude, from the uniqueness of (x, y) , that $(Tx, Ty) = (x, y)$. Thus $Tx = x$ and $Ty = y$.

REFERENCES

- 1. A. Abkar, and M. Gabeleh, Proximal quasi-normal structure and a best proximity point theorem, J. Nonlinear Convex Anal., 14 (4) (2013) 653-659.
- 2. A. Anthony Eldred, W. A. Kirk, and P. Veeramani, Proximal normal structure and relatively nonexpansive mappings, Studia Math., 171 (3) (2005) 283-293.
- 3. A. Fernández-León, and M. Gabeleh, Best proximity pair theorems for noncyclic mappings in Banach and metric spaces. Fixed Point Theory, 17(1) (2016), 63-84.
- 4. T. M. Gallagher, The demiclosedness principle for mean nonexpansive mappings, J. Math. Anal. Appl., 439 (2) (2016) 832-842.
- 5. K. Goebel, and W.A. Kirk, Topics in metric fixed point theory, Cambridge University Press, 1990.
- 6. A. Safari-Hafshejani, A. Amini-Harandi, and M. Fakhar, Best proximity points and fixed points results for non-cyclic and cyclic Fisher quasi-contractions, Numer. Funct. Anal. Optim., 40 (5) (2019) 603-619.