

EXISTENCE AND CONVERGENCE OF BEST PROXIMITY POINT RESULTS FOR CYCLIC QUASI-CONTRACTIONS IN REFLEXIVE BANACH SPACES

AKRAM SAFARI-HAFSHEJANI

Department of Pure Mathematics, Payame Noor University (PNU), P. O. Box: 19395-3697, Tehran, Iran asafari@pnu.ac.ir

ABSTRACT. In this paper, we study the existence of a best proximity point for a cyclic quasi-contraction map in a reflexive Banach space. The presented results extend and improve some recent results in the literature.

1. INTRODUCTION

In 2009 Al-Thagafi and Shahzad [1] prove the existence of a best proximity point for a cyclic contraction map in a reflexive Banach space.

Theorem 1.1. [1, Theorem 9] Let A and B be nonempty weakly closed subsets of a reflexive Banach space X and let $T : A \cup B \to A \cup B$ be a cyclic contraction map. Then there exists $(x, y) \in A \times B$ such that ||x - y|| = d(A, B).

Definition 1.2. [4] Let A and B be nonempty subsets of a normed space X and T be a cyclic map on $A \cup B$. We say that T satisfies the proximal property if

 $x_n \xrightarrow{w} x \in A \cup B$ and $||x_{n_k} - Tx_{n_k}|| \to d(A, B) \Longrightarrow ||x - Tx|| = d(A, B).$

²⁰²⁰ Mathematics Subject Classification. Primary 47H10; Secondary 54H25

Key words and phrases. Best proximity point, Cyclic quasi-contractions, Reflexive Banach spaces.

A. SAFARI

Theorem 1.3. [1, Theorem 10] Let A and B be nonempty subsets of a reflexive Banach space X such that A is weakly closed and let $T : A \cup B \rightarrow A \cup B$ be a cyclic contraction map. Then there exists $x \in A$ such that ||x - Tx|| = d(A, B) provided one of the following conditions is satisfied:

- (a) T is weakly continuous on A;
- (b) T satisfies the proximal property.

Theorem 1.4. [1, Theorem 12] Let A and B be nonempty subsets of a reflexive and strictly convex Banach space X such that A is closed and convex and let $T : A \cup B \rightarrow A \cup B$ be a cyclic contraction map. Then there exists a unique $x \in A$ such that $T^2x = x$ and ||x - Tx|| = d(A, B) provided one of the following conditions is satisfied:

- (a) T is weakly continuous on A;
- (b) T satisfies the proximal property.

Theorem 1.5. [6] Let A and B be nonempty and closed subsets of a complete metric space (X, d). Let T be a cyclic mapping on $A \cup B$ such that

 $d(Tx, Ty) \le c \max\left\{d(x, y), d(x, Tx), d(y, Ty)\right\},\$

for all $x \in A$ and $y \in B$ where $c \in [0,1)$. Then T has a unique fixed point x in $A \cap B$ and the Picard iteration $\{T^n x_0\}$ converges to x for any starting point $x_0 \in A \cup B$.

2. MAIN RESULTS

The following results will be needed to prove the main theorems of this section.

Lemma 2.1. Let A and B be nonempty subsets of the metric space (X,d)and let $T : A \cup B \to A \cup B$ be a cyclic quasi-contraction map, that is there exists $\lambda \in [0,1)$ such that

$$d(Ty, Tx) \le \lambda \max\{d(x, y), d(x, Tx), d(Ty, y)\} + (1 - \lambda)d(A, B)$$

for all $x \in A$ and $y \in B$. For $x_0 \in A$, define $x_{n+1} := Tx_n$ for each $n \ge 0$. Then $d(x_{2n}, x_{2n+1}) \to d(A, B)$ as $n \to \infty$.

The next two results that are extentions of Theorems 1.1 and 1.3, show the existence of a best proximity point for a cyclic quai-contraction map in a reflexive Banach space.

Theorem 2.2. Let A and B be nonempty weakly closed subsets of a reflexive Banach space X and let $T : A \cup B \to A \cup B$ be a cyclic quasi-contraction map. Then there exists $(x, y) \in A \times B$ such that ||x - y|| = d(A, B).

Proof. If d(A, B) = 0, the result follows from Theorem 1.5. So, we assume that d(A, B) > 0. For $x_0 \in A$, define $x_{n+1} := Tx_n$ and for each $n \ge 0$. By Lemma 3.2 of [3], the sequences $\{x_{2n}\}$ and $\{x_{2n+1}\}$ are bounded. As X is reflexive and A is weakly closed, the sequence $\{x_{2n}\}$ has a subsequence $\{x_{2n_k}\}$ with $x_{2n_k} \xrightarrow{w} x \in A$. As $\{x_{2n_k+1}\}$ is bounded and B is weakly closed, we

can say, without loss of generality, that $x_{2n_k+1} \xrightarrow{w} y \in B$ as $k \to \infty$. Since $x_{2n_k} - x_{2n_k+1} \xrightarrow{w} x - y \neq 0$ as $k \to \infty$, there exists a bounded linear functional $f: X \to [0, +\infty)$ such that

$$||f|| = 1$$
 and $f(x - y) = ||x - y||.$

For each $k \ge 1$, we have

$$|f(x_{2n_k} - x_{2n_k+1})| \le ||f|| ||x_{2n_k} - x_{2n_k+1}|| = ||x_{2n_k} - x_{2n_k+1}||.$$

Since

$$\lim_{k \to \infty} f(x_{2n_k} - x_{2n_k+1}) = f(x - y) = ||x - y||,$$

it follows from Lemma 2.1 that

$$\|x - y\| = \lim_{k \to \infty} |f(x_{2n_k} - x_{2n_k+1})| \le \lim_{k \to \infty} \|x_{2n_k} - x_{2n_k+1}\| = d(A, B).$$

Thus $\|x - y\| = d(A, B).$

The following theorem is proved in a completely similar way to the proof of theorem 1.3.

Theorem 2.3. Let A and B be nonempty subsets of a reflexive Banach space X such that A is weakly closed and let $T : A \cup B \to A \cup B$ be a cyclic quasicontraction map. Then there exists $x \in A$ such that ||x - Tx|| = d(A, B) provided one of the following conditions is satisfied:

- (a) T is weakly continuous on A.
- (b) T satisfies the proximal property.

Proof. If d(A, B) = 0, the result follows from Theorem 1.5. So, we assume that d(A, B) > 0. For $x_0 \in A$, define $x_{n+1} := Tx_n$ for each $n \ge 0$. By Lemma 3.2 of [3], the sequence $\{x_{2n}\}$ is bounded. As X is reflexive and A is weakly closed, the sequence $\{x_{2n}\}$ has a subsequence $\{x_{2n_k}\}$ with $x_{2n_k} \xrightarrow{w} x \in A$ as $k \to \infty$.

(a) Since T is weakly continuous on A and $T(A) \subseteq B$, we have $x_{2n_k+1} \xrightarrow{w} Tx \in B$ as $k \to \infty$. Thus $x_{2n_k} - x_{2n_k+1} \xrightarrow{w} x - Tx$ as $k \to \infty$. Since $x_{2n_k} - x_{2n_k+1} \xrightarrow{w} x - Tx \neq 0$ as $k \to \infty$, there exists a bounded linear functional $f: X \to [0, +\infty)$ such that

$$||f|| = 1$$
 and $f(x - Tx) = ||x - Tx||$.

For each $k \ge 1$, we have

$$|f(x_{n_k} - x_{n_k+1})| \le ||f|| ||x_{2n_k} - x_{2n_k+1}|| = ||x_{2n_k} - x_{2n_k+1}||.$$

Since

$$\lim_{k \to \infty} f(x_{2n_k} - x_{2n_k+1}) = f(x - Tx) = ||x - Tx||,$$

it follows from Lemma 2.1 that

 $\|x - Tx\| = \lim_{k \to \infty} |f(x_{2n_k} - x_{2n_k+1})| \le \lim_{k \to \infty} \|x_{2n_k} - x_{2n_k+1}\| = d(A, B).$ Thus $\|x - Tx\| = d(A, B).$ (b) By Lemma 2.1, we have

$$||x_{2n_k} - Tx_{2n_k}|| = ||x_{2n_k} - x_{2n_k+1}|| \to d(A, B).$$

as $k \to \infty$. As T satisfies the proximal property, it follows that ||x - Tx|| = d(A, B).

The next result that is extention of Theorem 1.4, shows the existence and uniqueness of a best proximity point for a cyclic quasi contraction map in a reflexive and strictly Banach space.

Theorem 2.4. Let A and B be nonempty subsets of a reflexive and strictly convex Banach space X such that A is closed and convex let $T : A \cup B \rightarrow$ $A \cup B$ be a cyclic quasi-contraction map. Then there exists a unique $x \in A$ such that $T^2x = x$ and ||x - Tx|| = d(A, B) provided one of the following conditions is satisfied:

- (a) T is weakly continuous on A.
- (b) T satisfies the proximal property.

Proof. If d(A, B) = 0, the result follows from Theorem 1.5. So, we assume that d(A, B) > 0. Since A is closed and convex, it is weakly closed. It follows from Theorem 2.3 that there exists $x \in A$ such that ||x - Tx|| = d(A, B). Also

$$||T^{2}x - Tx|| \le \lambda \max\{||Tx - x||, ||T^{2}x - Tx||\} + (1 - \lambda)d(A, B)$$

= $\lambda ||T^{2}x - Tx|| + (1 - \lambda)d(A, B),$

and so $||T^2x - Tx|| = d(A, B)$. In fact, $T^2x = x$. To see this, assume that $T^2x \neq x$. It follows, from the convexity of A and the strict convexity of X, that

$$\|\frac{T^2x + x}{2} - Tx\| < d(A, B),$$

a contradiction. A similar argument shows the uniqueness of x follows as \Box

References

- 1. M.A. Al-Thagafi, and N. Shahzad, *Convergence and existence results for best proximity points*, Nonlinear Anal., Theory Methods Appl., **70** (10) (2009) 3665-3671.
- A.A. Eldred, and P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl., **323** (2006) 1001–1006.
- A. Safari-Hafshejani, A. Amini-Harandi, and M. Fakhar, Best proximity points and fixed points results for non-cyclic and cyclic Fisher quasi-contractions, Numer. Funct. Anal. Optim., 40 (5) (2019) 603-619.
- T. M. Gallagher, The demiclosedness principle for mean nonexpansive mappings, J. Math. Anal. Appl., 439 (2) (2016) 832-842.
- 5. Sh. Rezapour, M. Derafshpour, and N. Shahzad, Best Proximity Points of Cyclic φ -Contractions on Reflexive Banach Spaces, 2010.
- 6. A. Safari-Hafshejani, Generalizations of Banach's contraction principle and Kannan and Chatterjea's theorems for cyclic and non-cyclic mappings, Accepted.