

CONVOLUTION, ERROR FUNCTION AND A NEW SPECIAL FUNCTION IN CLASS OF UNIVALENT ANALYTIC FUNCTION

SEYED HADI SAYEDAIN BOROUJENI¹* AND SHAHRAM NAJAFZADEH²

^{1,2} Department of Mathematics, Payame Noor University, Tehran, Iran.

ABSTRACT. The main objective of this paper is to introduce a new special class of analytic univalent functions based on a combination of the Error function and a new function, that we create with the help of convolution. we examine several properties of this class, such as, Weighted mean, Coefficient estimate and extreme points.

1. INTRODUCTION

Let $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disk in the complex plane $\mathbb C$. Denote by $\mathcal A$ the well-known class of analytic and normalized functions of in $\mathbb U$. we note that each function f in A has the form

$$
f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad (z \in \mathbb{U}, a_n \in \mathbb{C}).
$$
 (1.1)

we say that a function f is univalent in \mathbb{U} if $f(z_1) \neq f(z_2)$ for all $z_1, z_2 \in \mathbb{U}$ with $z_1 \neq z_2$. The family of all univalent functions f in U is denoted by S $[2, 4]$ $[2, 4]$ $[2, 4]$. The subclass of A create withe changing negative coefficients and are of the type

²⁰¹⁰ Mathematics Subject Classification. 30C45, 30C50

Key words and phrases. Error function, Convolution, Univalent function, Weighted mean, Coefficient estimate.

$$
f(z) = z - \sum_{n=2}^{\infty} a_n z^n, \quad (a_n \ge 0).
$$
 (1.2)

The convolution or Hadamard product $f(z)$ and $g(z)$ for f to form (1.1) and $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$ is $(f * g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n$ for more details see [\[2\]](#page-3-0).

The Error Function and Subclasses of Analytic Univalent Functions introduce by Sayedain and Najafzadeh [\[5\]](#page-3-2), is form

$$
E_r f(z) = \frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)n!} z^{2n+1}
$$

= $z + \sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{(2n-1)(n-1)!} z^n$, $(z \in \mathbb{C}).$ (1.3)

Let $h(z) = z + (\frac{3}{e} - 2)z^{n}$, $(n = 0, 1, 2, ...)$ and the Taylor series of this h

$$
h(z) = z - \sum_{n=2}^{\infty} \frac{(-1)^n (2n-1)}{n!} z^n,
$$
\n(1.4)

Definition 1.1. The function $H(z)$ denote by convolution $h(z)$ and $E_rf(z)$

$$
H(z) = h(z) * (2z - \mathbf{E}_{r}(f)) * f(z)
$$

= $z - \sum_{n=2}^{\infty} \frac{1}{n((n-1)!)^2} a_n z^n$. (1.5)

Where $f(z)$ is [\(1.2\)](#page-1-0). new, a function of the form (1.2) is in the class $\mathcal{W}_Q(a, b)$ if it satisfies the condition

$$
\operatorname{Re}\left\{\frac{H(z) + zH'(z) + az^2 H''(z) - z}{azH'(z) + (1 - b)H(z)}\right\} > Q, \quad (0 \leq Q < 1). \tag{1.6}
$$

Where $0 \le a, b \le 1, a < b$ and $H(z)$ are give by (1.5) , also $H'(z), H''(z)$ are first and second order derivatives, respectively [\[3\]](#page-3-3).

2. main results

In the folloing theorem, we express a condition for the functions that belong to the class $W_Q(a, b)$.

Theorem 2.1. Let $f(z)$ of the form[\(1.2\)](#page-1-0). f belong to the class $W_Q(a, b)$ if and only if

$$
\sum_{n=2}^{\infty} \frac{\frac{n+1}{n} + a(n(Q+1)) + Q(1-b)}{((n-1)!)^2} a_n \le 1 + Q(b-a-1), \quad (0 \le Q < 1). \tag{2.1}
$$

Proof. By calculating the derivatives of the first and second order and plac-ing in [\(1.5\)](#page-1-1) and also consider "z" as a real number that is moved to $z \to 1^$ we have

$$
\frac{1 - \sum_{n=2}^{\infty} \frac{a(n-1) + \frac{1}{n} + 1}{((n-1)!)^2} a_n}{(1 + a - b) - \sum_{n=2}^{\infty} \frac{an - b + 1}{((n-1)!)^2} a_n} > Q
$$

$$
Q(b - a - 1) + 1 - \sum_{n=2}^{\infty} \frac{a(n(Q+1)) + Q(1-b) + \frac{1}{n} + 1}{((n-1)!)^2} a_n \ge 0
$$

So, we proved that if $f(z)$ belong to the class $W_Q(a, b)$ the related (2.1) holds. Conversely, it is easily proven. see [\[5\]](#page-3-2). \Box

The results is sharp for example $g(z) = z - \frac{1 + Q(b - a - 1)}{Q(a - b + 1) + Q(a - a)}$ $\frac{1+Q(\theta-a-1)}{Q(2a-b+1)+2a+1.5}z^2.$

Theorem 2.2. $W_Q(a, b)$ is a convex set.

Proof. It is enough to show for $f_i(z)$ belong to the class $\mathcal{W}_Q(a, b)$, then $\sum_{i=1}^{m}$ $i=1$ $\lambda_i f_i(z) \in \mathcal{W}_Q(a, b)$ where \sum^m $i=1$ $\lambda_i = 1$ and $\lambda_i \geq 0$.

3. on geometric properties

In the following theorem, we introduce the functions that belong to the class $W_Q(a, b)$ and are the extreme points of the set. we will show that they have such a property $[1]$.

Theorem 3.1. Let
$$
f_n(z) = z - \frac{((n-1)!)^2 (1 + Q(b - a - 1))}{a(n(Q+1)) + Q(1-b) + \frac{1}{n} + 1} z^n
$$
, $(n = 2, 3, ...)$ also $f_1(z) = z$. then $\sum_{n=1}^{\infty} \mu_n f_n(z) \in W_Q(a, b)$ if and only if $\sum_{n=1}^{\infty} \mu_n = 1$ and $\mu_n \ge 0$.

Proof. Let assume first $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} \mu_n f_n(z) \in W_Q(a, b)$ for $\sum_{n=1}^{\infty}$ $\mu_n = 1$ and $\mu_n \geq 0$. we will show that $f_n \in \mathcal{W}_Q(a, b)$ $(n = 2, 3, ...)$. Refer theorem(2.1)

$$
a_n \le \frac{1 + Q(b - a - 1)((n - 1)!)^2}{a(n(Q + 1)) + Q(1 - b) + \frac{1}{n} + 1}
$$

therefore by letting

$$
\mu_n = \frac{a(n(Q+1)) + Q(1-b) + \frac{1}{n} + 1}{1 + Q(b-a-1)((n-1)!)^2} a_n
$$

and that $\mu_1 = 1 - (\mu_2 + \mu_3 + ...)$ we conclude the required result. Conversely is easily. \Box

Theorem 3.2. Let $f_1(z) = z - \sum_{n=2}^{\infty} a_{n,1} z^n$ and $f_2(z) = z - \sum_{n=2}^{\infty} a_{n,2} z^n$ belongs to the class $\mathcal{W}_Q(a, b)$, then the weighted mean of f_1, f_2 in to $\mathcal{W}_Q(a, b)$.

Proof. Let $H_t(z) = \frac{1}{2}(1+t)f_1(z) + \frac{1}{2}(1-t)f_2(z)$ we have $H_t(z) = z - \frac{1}{2}$ 2 \sum^{∞} $n=2$ $((1 + t)a_{n,1} + (1 - t)a_{n,2})z^n$

since f_1 and f_2 are in the class $W_Q(a, b)$, so by theorem(2.1) we have

$$
\sum_{n=2}^{\infty} \frac{a(n(Q+1)) + Q(1-b) + \frac{n+1}{n}}{((n-1)!)^2} \left[\frac{1}{2}(1+t)a_{n,1} + \frac{1}{2}(1-t)a_{n,2}\right]
$$

$$
\leq \frac{1}{2}(1+t)(1+Q(b-a-1)) + \frac{1}{2}(1-t)(1+Q(b-a-1))
$$

Which the above expression is equal to $Q(b-a-1)+1$. So the condition of theorem(2.1) for $H_t(z)$ is established and therefore the proof is complete. \Box

REFERENCES

- 1. S. Altınkaya and S.O. Olatunji, Generalized distribution for analytic function classes associated with error functions and Bell numbers, Bol. Soc. Mat. Mex, 26 (2020) 377–384.
- 2. P. L. Duren, Univalent functions, Grundelheren der Mathematischen Wissenchaften Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
- 3. Sh. Najafzadeh, Some results on univalent holomorphic functions based on q-analogue of Noor operator, Int. J. Appl. Math., 32(5) (2019) 775-784.
- 4. C. Ramachandran, L. Vanitha and S. Kanas, Certain results on q-starlike and q-convex error functions, Math. Slovaca., 68 (2018) 361-368.
- 5. S. H. Sayedain Boroujeni, Sh. Najafzadeh, Error Function and Certain Subclasses of Analytic Univalent Functions, Sahand Commun. Math. Anal., 20(1) (2023) 107-117.

 $\emph{Email address: } ^{1}$ h.sayedain@pnu.ac.ir, hadisayedain@gmail.com, $\emph{Email address: }^2$ shnajafzadeh 44 @pnu.ac.ir, najafzadeh 1234 @yahoo.ie