

ON THE POSITIVE OPERATORS AND LINEAR MAPS

LEILA NASIRI1*∗*, MAHMOOD SHAKOORI²

Department of Mathematics and computer science, Faculty of science, Lorestan University, Khorramabad, Iran. Email:leilanasiri468@gmail.com Department of Mathematics and computer science, Faculty of science, Lorestan University, Khorramabad, Iran. Email:mahmoodshakoori@gmail.com

Abstract. In this work, we first prove an numerical inequality. Then, we present some inequalities for positive operators and linear maps.

1. INTRODUCTION

In what follows, we denote by $\mathbb{B}(\mathbf{H})$ the space of all bounded linear operators on a Hilbert space $(H, \langle , , \rangle)$. We say the operator *A* is positive if $\langle Ax, x \rangle \ge 0$ for all $x \in$ **H** and write $A \ge 0$, is invertible positive if $\langle Ax, x \rangle > 0$ for all $x \in$ **H** and write $A > 0$. For two selfadjoint operators $A, B \in \mathbb{B}(\mathbf{H})$, we say $A \geq B(A > B)$ if *A − B ≥* 0 (*A − B >* 0)*,* respectively. The adjoint of the operator *A* define by A^* and its absolute value by $|A|$, that is, $|A| = (A^*A)^{\frac{1}{2}}$. A linear map Φ is called positive if $\Phi(A) \geq 0$ whenever $A \geq 0$. It is said to be unital if $\Phi(I) = I$. For $A, B \in \mathbb{B}(\mathbf{H})$ such that *A* and *B* are invertible positive and $0 \leq \nu \leq 1$, we utilize the following notations to define the geometric mean *A♯νB* and the arithmetic mean $A\nabla_{\nu}B$, respectively,

$$
A\#_{\nu}B = A^{\frac{1}{2}}(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^{\nu}A^{\frac{1}{2}} \quad and \quad A \bigtriangledown_{\nu} B = \nu A + (1 - \nu)B.
$$

For $A, B \in \mathbb{B}(\mathbf{H})$ such that are invertible positive and $0 \leq \nu \leq 1$, we have operator Young inequality as follows:

$$
A\#_{\nu}B \le A\nabla_{\nu}B. \tag{1.1}
$$

The Lowner-Heinz theorem $[6]$ $[6]$ states that if $A, B \in \mathbb{B}(\mathbf{H})$ are positive, then for 0 ≤ p ≤ 1*,*

$$
A \le B \qquad \text{implies} \quad A^p \le B^p. \tag{1.2}
$$

¹⁹⁹¹ *Mathematics Subject Classification.* Primary 15A60; Secondary 47A63.

Key words and phrases. Positive maps, Positive operators.

In general (1.2) is not true for $p > 1$. M. Lin [[5\]](#page-3-1) reversed (1.1) (1.1) (1.1) using the Katorovich constant as follows: If $0 \lt m \leq A, B \leq M$ and Φ are a unital positive linear map. Then

$$
\varphi^2(A\nabla B) \le K^2(h)\varphi^2(A\#B), \varphi^2(A\nabla B) \le K^2(h)(\varphi(A)\#\varphi(B))^2, \tag{1.3}
$$

where $K(h) = \frac{(1+h)^2}{4h}$ with $h = \frac{M}{m}$ is the Kantorovich constant.

2. Main results

Furuichi et al. in [[4\]](#page-3-2) showed that for $0 < x \le 1$ and $0 \le \nu \le 1$, the following inequality holds:

$$
m_{\nu}(x)x^{\nu} \le (1 - \nu) + \nu x,\tag{2.1}
$$

where $m_{\nu}(x) = 1 + \frac{2^{\nu} \nu (1 - \nu)(x - 1)^2}{(x + 1)^{1 + \nu}}$ and $1 \leq m_{\nu}(x)$. The next Lemma is an refinement of ([2.1](#page-1-0)).

Lemma 2.1. *Let* $0 < x \le 1$ *. If* $0 \le \nu \le \frac{1}{2}$ *, then* $m_{2\nu}(\sqrt{x})x^{\nu} + \nu(\sqrt{x} - 1)^2 \le (1 - \nu) + \nu x,$ (2.2)

where $m_{2\nu}(\sqrt{x})$ *defined as [\(2.1](#page-1-0)).*

Proof. Letting $0 \leq \nu \leq \frac{1}{2}$. By an simple computation

$$
(1 - \nu) + \nu x - \nu(\sqrt{x} - 1)^2 = 2\nu\sqrt{x} + (1 - 2\nu).
$$

By applying ([2.1](#page-1-0)) for the relation above,

$$
m_{2\nu}(\sqrt{x})x^{\nu} \le (1 - 2\nu) + 2\nu\sqrt{x}.
$$

Therefore, (2.2) (2.2) is proved.

For a operator version of the inequality [\(2.2](#page-1-1)), see Theorem [2.2](#page-1-2).

Theorem 2.2. *Let* $A, B \in \mathbb{B}(H)$ *are two invertible positive operators such that* $0 < m \leq A \leq m^{'} < M^{'} \leq B \leq M$ or $0 < m \leq B \leq m^{'} < M^{'} \leq A \leq M$ for some *positive real numbers* m, m', M, M' . Then for $0 \le \nu \le \frac{1}{2}$

$$
A\nabla_{\nu}B \ge m_{2\nu}(\sqrt{h})A\sharp_{\nu}B + \nu(A\nabla B - A\sharp B),\tag{2.3}
$$

where $m_{2\nu}(\sqrt{x})$ *defined as [\(2.1](#page-1-0)).*

Proof. The condition $0 \leq m \leq A \leq m' \leq M' \leq B \leq M$ ensure us that $Sp\left(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}\right) \subset [h',h],$ where $h = \frac{M}{m}$ and $h = \frac{M}{m'}$. On the other hand, ([2.2](#page-1-1)) implies that

$$
\min_{\sqrt{h'} \le \sqrt{x} \le \sqrt{h} \le 1} m_{2\nu} (\sqrt{x}) x^{\nu} + \nu (\sqrt{x} - 1)^2 \le (1 - \nu) + \nu x,\tag{2.4}
$$

If we set $A^{-\frac{1}{2}}BA^{-\frac{1}{2}}$ in the inequality ([2.4\)](#page-1-3) and use from the decreasing property $m_{2\nu}(\sqrt{x})$, the following inequality deduces

$$
\nu A^{-\frac{1}{2}} B A^{-\frac{1}{2}} + (1 - \nu) I
$$

\n
$$
\geq m_{2\nu} (\sqrt{h}) \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \right)^{\nu} + \nu (A^{-\frac{1}{2}} B A^{-\frac{1}{2}} + I - 2 (A^{-\frac{1}{2}} B A^{-\frac{1}{2}})^{\frac{1}{2}}).
$$
 (2.5)

LINEAR MAPS 3

Multiplying both sides of the inequality (2.5) (2.5) by $A^{\frac{1}{2}}$, we can get to the desired result. Similarly, the condition $0 < m \leq B \leq m' < M' \leq A \leq M$ concludes the desired result. $\hfill \square$

Remark 2.3*.* As $A\nabla B - A\sharp B \ge 0$. By [\(2.3](#page-1-5)), we have $A\nabla_{\nu}B \ge m_{2\nu}(\sqrt{h})A\sharp_{\nu}B$.

2.1. **The higher powers using positive mps.**

Lemma 2.4. [\[3](#page-3-3)] *Let* $A \in \mathbb{B}(H)$ *be positive and* Φ *be a positive unital linear map. Then*

$$
\Phi(A)^{-1} \le \Phi(A^{-1}).
$$
\n(2.6)

Lemma 2.5*.* [\[2](#page-3-4)]-[\[1](#page-3-5)] *Let* $A, B \ge 0$ *. Then for* $1 \le r < \infty$

$$
||AB|| \le \frac{1}{4}||A+B||^2. \tag{2.7}
$$

$$
||A^r + B^r|| \le ||(A+B)^r||. \tag{2.8}
$$

Theorem 2.6*. Let* $A, B \in \mathbb{B}(H)$ *are two invertible positive operators such that* $0 <$ $m \leq A \leq m^{'} < M^{'} \leq B \leq M$ or $0 < m \leq B \leq m^{'} < M^{'} \leq A \leq M$ for some *positive real numbers* $m, m^{'}, M, M^{'}$ and Φ *be a normalized positive linear map. Then for every* $0 \leq \nu \leq \frac{1}{2}$

$$
\Phi^2(A\nabla_{\nu}B + \nu Mm\left(A^{-1}\nabla B^{-1} - A^{-1}\sharp B^{-1}\right)) \le \left(\frac{K(h)}{m_{2\nu}(\sqrt{h})}\right)^2 \Phi^2(A\sharp_{\nu}B), \quad (2.9)
$$

$$
\Phi^2(A\nabla_{\nu}B + \nu Mm\left(A^{-1}\nabla B^{-1} - A^{-1}\sharp B^{-1}\right)) \le \left(\frac{K(h)}{m_{2\nu}(\sqrt{h})}\right)^2 (\Phi(A)\sharp_{\nu}\Phi(B))^p, \tag{2.10}
$$

where $K(h) = \frac{(h+1)^2}{4h}$ *with* $h = \frac{M}{m}$ *is the Kantorovich constant and* $m_{2\nu}(\sqrt{h})$ *is as defined in [\(2.1\)](#page-1-0).*

Proof. It is trivial that $A + MmA^{-1} \leq M + m$ and $B + MmB^{-1} \leq M + m$. An simple computation show that

$$
\Phi(A\nabla_v B) + Mm\Phi\left(A^{-1}\nabla_v B^{-1}\right) \le M + m. \tag{2.11}
$$

By applying $(2.7), (2.6), (2.3)$ $(2.7), (2.6), (2.3)$ $(2.7), (2.6), (2.3)$ $(2.7), (2.6), (2.3)$ $(2.7), (2.6), (2.3)$ $(2.7), (2.6), (2.3)$ and (2.11) (2.11) , respectively, one can check that

$$
\begin{split}\n&\left\|\Phi(A\nabla_{\nu}B + \nu Mm\left(A^{-1}\nabla B^{-1} - A^{-1}\sharp B^{-1}\right))Mmm_{2\nu}(\sqrt{h})\Phi^{-1}(A\sharp_{\nu}B)\right\| \\
&\leq \frac{1}{4}\left\|\Phi(A\nabla_{\nu}B + \nu Mm\left(A^{-1}\nabla B^{-1} - A^{-1}\sharp B^{-1}\right)) + Mmm_{2\nu}(\sqrt{h})\Phi^{-1}(A\sharp_{\nu}B)\right\|^{2} \\
&\leq \frac{1}{4}\left\|\Phi(A\nabla_{\nu}B + \nu Mm\left(A^{-1}\nabla B^{-1} - A^{-1}\sharp B^{-1}\right)) + Mmm_{2\nu}(\sqrt{h})\Phi(A^{-1}\sharp_{\nu}B^{-1})\right\|^{2} \\
&= \frac{1}{4}\left\|\Phi(A\nabla_{\nu}B) + Mm\Phi\left(\nu\left(A^{-1}\nabla B^{-1} - A^{-1}\sharp B^{-1}\right) + m_{2\nu}(\sqrt{h})(A^{-1}\sharp_{\nu}B^{-1})\right)\right\|^{2} \\
&\leq \frac{1}{4}\left\|\Phi(A\nabla_{\nu}B) + Mm\Phi(A^{-1}\nabla_{\nu}B^{-1})\right\|^{2} \\
&\leq \frac{(M+m)^{2}}{4}.\n\end{split}
$$

4 NASIRI,SHAKOORI

This proves the inequality [\(2.9](#page-2-3)). The inequality ([2.10\)](#page-2-4) can prove similarly. \square

Corollary 2.7*.* Let $A, B \in \mathbb{B}(H)$ are two invertible positive operators such that $0 < m \le A \le m' < M' \le B \le M \; or \; 0 < m \le B \le m' < M' \le A \le M$ *for some positive real numbers* $m, m^{'}, M, M^{'}$ and Φ *be a normalized positive linear map. Then for* $p > 0$ *and every* $0 \le \nu \le \frac{1}{2}$

$$
\Phi^p(A\nabla_\nu B + \nu Mm\left(A^{-1}\nabla B^{-1} - A^{-1}\sharp B^{-1}\right)) \le \left(\frac{K(h)}{m_{2\nu}(\sqrt{h})}\right)^p \Phi^p(A\sharp_\nu B), \tag{2.12}
$$

$$
\Phi^p(A\nabla_\nu B + \nu Mm\left(A^{-1}\nabla B^{-1} - A^{-1}\sharp B^{-1}\right)) \le \left(\frac{K(h)}{m_{2\nu}(\sqrt{h})}\right)^p (\Phi(A)\sharp_\nu \Phi(B))^p, \tag{2.13}
$$

where $K(h) = \frac{(h+1)^2}{4h}$ *with* $h = \frac{M}{m}$ *is the Kantorovich constant and* $m_{2\nu}(\sqrt{h})$ *is as defined in [\(2.1\)](#page-1-0).*

Proof. If $0 < p \le 2$, then $0 < \frac{p}{2} \le 1$. Thus, by Theorem [2.6](#page-2-5), we obtain the desired results. Letting *p >* 2*.* By [\(2.8](#page-2-6)) and the same method as used in Theorem [2.6](#page-2-5) the inequalities above conclude.

Remark 2.8*.* It is clear that $A^{-1}\nabla B^{-1} - A^{-1}\sharp B^{-1} \geq 0$. Thus,

$$
\Phi^p(A\nabla_\nu B) + (\nu Mm)^p \Phi^p(A^{-1}\nabla B^{-1} - A^{-1}\sharp B^{-1}) \ge \Phi^p(A\nabla_\nu B).
$$

In result,

$$
\|\Phi^p(A\nabla_\nu B)\| \le \|\Phi^p(A\nabla_\nu B) + (\nu Mm)^p \Phi^p(A^{-1}\nabla B^{-1} - A^{-1}\sharp B^{-1})\|
$$

$$
\le \|(\Phi(A\nabla_\nu B) + (\nu Mm)\Phi(A^{-1}\nabla B^{-1} - A^{-1}\sharp B^{-1}))^p\|(by(2.8)).
$$

On the other hand, by (2.1) (2.1) , $m_{2\nu}(\sqrt{h}) \ge 1$. This shows that hand-left side of (2.12) (2.12) (2.12) and (2.13) is a norm refinement of (1.3) (1.3) (1.3) and hand-right side of (2.12) (2.12) and (2.13) (2.13) (2.13) are tighter than ([1.3](#page-1-6)).

REFERENCES

- 1. T. Ando and X. Zhan, *Norm inequalities related to operator monotone functions*, Math. Ann. 1999; 315: 771-780.
- 2. R. Bhatia and F. Kittaneh, *Notes on matrix arithmetic-geometric mean inequalities*, Linear Algebra Appl. 2000; 308: 203-211.
- 3. R. Bhatia, *Positive Definite Matrices*, Princeton University Press, Princeton, 2007.
- 4. S. Furuichi and H. R. Moradi, *Some refinements of operator inequalities of classical inequalities*, Rocky Mountain J. Math. 48(7): 2289-2309 (2018). DOI: 10.1216/RMJ-2018-48-7-2289.
- 5. M. Lin, *Squaring a reverse AM − GM inequality*, Studia Math. **215** (2013), 187-194.
- 6. F. Kubo and T. Ando, *Means of positive linear operators*, Math. Ann. **246** (1980), 205–224.