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Abstract. The aim of the present paper is to introduce semi-doubly
stochastic and (weak)majorization on a non commutative measure space
(M, τ), where M is a semi finite von Neumann algebra with a normal
faithful trace τ .

1. Introduction

Since Hardy, Litttewood, and Pólya in 1929 introduced the concept of
majorization, many mathematicians have discussed the weak majorization
and manjorization in various circumstances with several applications. Let
x = (x1, . . . , xn) and y = (y1, . . . , yn) be two vectors in Rn. x is said to be

majorized and denoted by y x ≺ y, if
∑k

i=1 x
↓
i ≤

∑k
i=1 y

↓
i , for all 1 ≤ k ≤

n and
∑n

i=1 x
↓
i =

∑n
i=1 y

↓
i ,where x↓ = (x↓1, . . . , x

↓
n) and y↓ = (y↓1, . . . , y

↓
n)

are obtained from x and y by rearranging their components in decreasing
order. Moreover, the study of (weak)majorization has been successful in the
theory of matrices via comparison of eigenvalues by Ando in 1982. On the
other hand, the doubly stochastic matrices and maps have been studied in
connection with majorization theory by Mirsky, Chong, Alberti and Uhlman.
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Definition 1.1. An n × n matrix D = (aij) is called doubly stochastic if
D1 = 1 and D∗1 = 1, where 1 = (1, . . . , 1) ∈ Rn and D∗ is the adjoint
matrix of D.

Theorem 1.2. [5] For X,Y ∈ Rn, the following statements are equivalent:

(1) X ≺ Y .
(2) X is in the convex hull of all vectors obtained by permuting the

coordinates of Y .
(3) X = DY for some doubly stochastic matrix D.

Definition 1.3. Let A and B are two m× n matrices. A is majorized by B
in symbols A ≺ B if there is a doubly stochastic m×m matrix D such that
A = DB.

The theory of (weak)majorization has been developed for real- valued
measurable functions on abstract measure space based on the theory rear-
rangements by Chong and Sakai. In the case of a σ-finite measure space
(X,A, µ), the notion of decreasing rearrangement can be defined for non-
negative integrable functions. For a finite measure space (X,A, µ), Ryff
considered the class of all linear operators T : L1(X,µ) → L1(X,µ) for
which Tf ≺ f , for all f ∈ L1(X,µ). This class is denoted by DS(L1(X,µ))
and each element of this class is called doubly stochastic operators. For σ-
finite measure space (X,A, µ), in [1] the semi-doubly stochastic operator is
introduced and the set of all these operators is denoted by SDS

(
L1(X,µ)

)
.

For a non-negative f ∈ L1(X,µ), let Sf := {Sf ;S ∈ SDS(L1)} and
Ωf := {h ∈ L1;h ≥ 0 and h ≺ f}. It is easily seen that both sets Sf

and Ωf are convex subsets of L1. It has been proved that Sf is dense in Ωf

[1].

2. Main results

In this section we study the relation between majorization and doubly
stochastic maps on a semi finite von Neumann algebras. Throughout this
section M is a semi finite von Neumann algebra on a Hilbert space H and τ
is a faithful normal semi finite trace on M. We fix a couple (M, τ) as a non-
commutative measure space. For positive operator x affiliated with We fix
a couple (M, τ), eI(x) will denote the spectral projection of x correspond-
ing to an interval I in [0,∞). A closed and densely defined linear operator
x : D(x) → H is said to be τ -measurable if x affiliated with M, and there

exists λ ≥ 0 such that τ(e|x|(λ,∞)) < ∞. The collection of all τ -measurable
operators is denoted by L0(M). The set L0(M) is a complex ∗-algebra with
unit element 1. The von Neumann algebra M is a ∗-subalgebra of L0(M).
For each L of L0(M), the set of all positive elements in L is denoted by L+.
The closure of L1(M) in L0(M) is denoted by G̃.

Let x ∈ L0(M) and t > 0. The t-th singular value of x (or generalized
s-numbers) is the number denoted by µt(x) and for each t ∈ R+

0 is defined
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by
µt(x) = inf{∥ xe ∥: e ∈ P(M), τ(1− e) ≤ t}.

For 0 < p < ∞, Lp(M, τ) is defined as the set of all τ -measurable operators
x such that

∥ x ∥p= τ(|x|p)
1
p < ∞. (2.1)

Moreover, we put L∞(M, τ) = M and denote by ∥ · ∥∞ the usual operator
norm. For simplicity from now on Lp(M, τ) will denoted by Lp(M). Let
1 ≤ p < ∞, an operator x ∈ M is said to be locally integrable if there exists
δ > 0 such that ∫ δ

0
µt(x)

p dt < ∞.

The set containing all these operators is denoted by Lp
loc(M). Note that in

particular, all bounded operators a ∈ M are of this class. Moreover,∫ δ

0
µt(x)

p dt ≥ µδ(x)
p−1

∫ δ

0
µt(x) dt

implies that Lp
loc(M) ⊂ L1

loc(M) for each p ≥ 1 [3].

Definition 2.1. Let a, b be positive τ -measureable operators. We say that a
is submajorized (weakly majorized) by b in symbol a ≺w b, if

∫ s
0 µt(a)dt ≤∫ s

0 µt(b)dt for all s > 0. Moreover a is said to be majorized by b and is

indicated by a ≺ b, if a ≺w b and
∫∞
0 µt(a)dt =

∫∞
0 µt(b)dt.

Let φ be a linear map from M to itself. φ is positive if φ(a) is positive
for every a ∈ M+, φ is unital if φ(1) = 1 and φ is trace preserving if
τ(φ(a)) = τ(a).

Definition 2.2. [2] A positive linear map φ : M −→ M is called doubly
stochastic if it is unital and trace preserving. φ is called doubly substochastic
if φ(1) ≤ 1 and τ(φ(a)) ≤ τ(a) for all a ∈ M+. The set of all doubly
stochastic ( resp. doubly substochastic) linear maps on M is denoted by
DS(M)(resp. DSS(M)).

In the following two propositions, which are proved in [2], the relations
between (weak)majorization and doubly (sub)stochastic maps are investi-
gated.

Proposition 2.3. Let φ : M −→ M be a positive linear map. Then

(1) φ(a) ≺w a for all a ∈ M+ if and only if φ ∈ DSS(M) .
(2) φ(a) ≺ a for all a ∈ M+ if and only if φ ∈ DSS(M) and φ is trace

preserving (hence φ ∈ DS(M) when τ(1) < ∞).

Proposition 2.4. Let a, b ∈ L0(M).

(1) If τ(1) < ∞ and b ∈ L1(M), then a ≺ b if and only if there exists
φ ∈ DS(M) such that a = φ(b).

(2) If b ∈ Lp(M) with 1 ≤ p < ∞, or if b ∈ M and a ∈ G̃, then a ≺w b
if and only if φ ∈ DSS(M) such that a = φ(b).
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Moreover, a normal and completly positive φ can be chosen in each (1) and
(2) if b ∈ Lp(M), 1 ≤ p < ∞, or a ∈ G = G̃ ∩M.

Theorem 2.1. [4] Let x, y be operators in L0(M). Then for p, q, r ∈ R+

that 1
p + 1

q = 1
r ,

1

r
| xy∗ |r≺w

1

p
| x |p +1

q
| y |q . (2.2)

Moreover, if x, y ∈ L1(M) are bounded operators or xy ∈ L2
loc(M), then

there exists a φ ∈ DS(M) such that a = φ(b).

1

r
| xy∗ |r≺ 1

p
| x |p +1

q
| y |q , (2.3)

if and only if | x |p=| y |q.

Corollary 2.5. Let x, y ∈ L1(M) are bounded operators. Then for p, q, r ∈
R+ that 1

p + 1
q = 1

r , there exists φ ∈ DSS(M) such that

| xy∗ |r= φ

(
r

p
| x |p +r

q
| y |q

)
.

Moreover, if τ(1) < ∞, then φ ∈ DS(M)

3. Conclusion

For a ∈ L0(M)+, let Sa := {φ(x); φ ∈ DSS(M)}, Da := {φ(x); φ ∈
DS(M)} and Ωa := {b ∈ L0(M)+; b ≺ a}. Sets Sa, Da and Ωa are convex.
Proposition 2.4 (part (1)) implies that If τ(1) < ∞ and a ∈ L1(M), then
Sa = Da. When τ(1) = ∞, it is not clear for us whether or not Sa = Ωa.
If we consider (ΩS)a := {b ∈ L0(M)+; b ≺w a}, then Proposition 2.4 (part
(2)) implies that Sa = (ΩS)a when a ∈ L1(M).

Acknowledgement

This work was supported by the Department of Mathematical Sciences
at Isfahan University of Technology, Iran.

References

1. F. Bahrami, S.M. Manjegani, and S. Moein, Semi-doubly stochastic operators and ma-
jorization of integrable functions, Bull. Malays. Math. Sci. Soc. series 44 (2) (2021)
693-703.

2. F. Hiai, Majorization and stochastic maps in von Neumann algebras, J. Math. Anal.
Appl. 127 (1987) 18-48.

3. G. Larotonda, The case of equality in Young’s inequality for the s-numbers in semi-finite
von Neumann algebras, J. Operator Theory 81 (2019) 157-173.

4. Z. Maleki Khouzani, S.M. Manjegani, Some inequalities and majorization for products
of -measurable operators. J Inequal Appl, 114 (2022). https://doi.org/10.1186/s13660-
022-02850-9.

5. L. Mirsky, Results and Problems in the theory of doubly-stochastic matrices, Z. Wahrsch.
Verw. Gebiete 1 (1963) 319-334.


	1. Introduction
	2. Main results
	3. Conclusion
	Acknowledgement
	References

