

ON CONVERGENCE OF ALTERNATING RESOLVENTS FOR A FINITE FAMILY OF PSEUDO-CONVEX FUNCTIONS

HADI KHATIBZADEH, MARYAM MOOSAVI

Department of Mathematics, Zanjan University, Iran hkhatibzadeh@znu.ac.ir; maryam_moosavi@znu.ac.ir

Abstract. In this paper, the strong convergence of the Halpern type and weak convergence of the sequence generated by the product of resolvents of pseudo-convex functions are established in the setting of Hadamard spaces.

1. INTRODUCTION

Let (X, d) be a metric space. A geodesic from x to y is a map γ from the closed interval $[0, d(x, y)] \subset \mathbb{R}$ to *X* such that $\gamma(0) = x$, $\gamma(d(x, y)) = y$ and $d(\gamma(t), \gamma(t')) = |t - t'|$ for all $t, t' \in [0, d(x, y)]$. The image of a geodesic path is called a geodesic segment, which is denoted by $[x, y]$ whenever it is unique. A metric space (X, d) is called a geodesic space if every two points of X are joined by a geodesic path, and *X* is said to be uniquely geodesic if every two points of *X* are joined by exactly one geodesic path. A subset C of X is said to be convex if C includes every geodesic segments joining two of its points. Let $x, y \in X$ and $t \in [0, 1]$, and we write $tx \oplus (1t)y$ for the unique point z in the geodesic segment joining from x to y such that

 $d(x, z) = (1 - t)d(x, y)$ *and* $d(z, y) = td(x, y)$ *.*

A geodesic triangle $\Delta(x_1, x_2, x_3)$ in a geodesic metric space (X, d) consists of

.

²⁰²⁰ *Mathematics Subject Classification.* Primary 47B35; Secondary 30H05.

Key words and phrases. Hadamard space, pseudo-convex function, weak convergence.

three vertices (points in X) with unparameterized geodesic segment between each pair of vertices. For any geodesic triangle, there is comparison (Alexandrov) triangle $\overline{\triangle} \subset \mathbb{R}^2$ such that $d(x_i, x_j) = d_{\mathbb{R}^2}(\overline{x}_i, \overline{x}_j)$ for $i, j \in \{1, 2, 3\}$. Let \triangle be a geodesic triangle in *X* and $\overline{\triangle}$ be a comparison triangle for $\overline{\triangle}$, then \triangle is said to satisfy the $CAT(0)$ inequality if for all points $x, y \in \triangle$ and $\bar{x}, \bar{y} \in \triangle$:

$$
d(x, y) \leq d_{\mathbb{R}^2}(\bar{x}, \bar{y}).
$$

Let x, y and z be points in X and y_0 be the midpoint of the segment $[y, z]$; then, the *CAT*(0) inequality implies

$$
d^{2}(x, y_{0}) \le \frac{1}{2}d^{2}(x, y) + \frac{1}{2}d^{2}(x, z) - \frac{1}{4}d(y, z).
$$
\n(1.1)

Inequality [\(1.1](#page-1-0)) is known as the *CN* inequality of Bruhat and Titis [[2](#page-3-0)]. A geodesic space *X* is said to be a *CAT*(0) space if all geodesic triangles satisfy the $CAT(0)$ inequality. Equivalently, *X* is called a $CAT(0)$ space if and only if it satisfies the *CN* inequality. *CAT*(0) spaces are examples of uniquely geodesic spaces, and complete *CAT*(0) spaces are called Hadamard spaces.

In a unique geodesic metric space *X*, a set $A \subset X$, is called convex iff for each $x, y \in A$, $[x, y] \subset A$. A function $f : X \to]-\infty, +\infty]$ is called

(1) proper iff

The domain of *f* defined by $D(f) := \{x \in X : f(x) < \infty\}$ is nonempty.

(2) lower semicontinuous (for short, lsc) iff

$$
\{x \in D(f) : f(x) \le r\},\
$$

is closed for each $r \in \mathbb{R}$.

(3) convex iff for all $x, y \in X$ and for all $\lambda \in [0, 1]$

$$
f((1 - \lambda)x \oplus \lambda y) \le (1 - \lambda)f(x) + \lambda f(y).
$$

(4) α -weakly convex for some $\alpha > 0$ iff for all $x, y \in X$ and for all $\lambda \in [0, 1]$

$$
f((1 - \lambda)x \oplus \lambda y) \le (1 - \lambda)f(x) + \lambda f(y) + \alpha \lambda (1 - \lambda)d^{2}(x, y).
$$

(5) quasi-convex iff for all $x, y \in X$ and for all $\lambda \in [0, 1]$

$$
f((1 - \lambda)x \oplus \lambda y) \le (1 - \lambda)f(x) \le \max\{f(x), f(y)\}.
$$

(6) pseudo-convex iff $f(y) > f(x)$ implies that there exists $\beta(x, y) > 0$ and $0 < \delta(x, y) \leq 1$ such that

$$
f(y) - f((1 - \lambda)x \oplus \lambda y) \ge \lambda \beta(x, y), \quad \forall \lambda \in (0, \delta(x, y)).
$$

INTEGRAL MEANS 3

Definition 1.1. Let $\{x_n\}$ be a bounded sequence in a geodesic metric space X. then, the asymptotic center $A(\lbrace x_n \rbrace)$ of $\lbrace x_n \rbrace$ is defined by

$$
A({x_n}) = \overline{v} \in X : \limsup_{n \to \infty} d(\overline{v}, x_n) = \inf_{x \in v} \limsup_{n \to \infty} d(v, x_n).
$$

Definition 1.2. A sequence $\{x_n\}$ in a Hadamard space X is said to be weakly converges to a point $\bar{v} \in X$ if $A({x_n}) = \bar{v}$ for every subsequence ${x_{n_k}}$ of ${x_n}$. In this case, we write *w −* lim_{n→∞} ${x_n} = \overline{v}$ (see [[1\]](#page-3-1)).

The concept of weak convergence in metric spaces was first introduced and studied by Lim [[6](#page-3-2)]. Kirk and Panyanak [\[5\]](#page-3-3) later introduced and studied this concept in $CAT(0)$ spaces and proved that it is very similar to the weak convergence in Banach space setting.

2. main results

Definition 2.1. Let \mathcal{H} be a Hadamard space and $f_i : \mathcal{H} \to]-\infty, +\infty]$ be convex and lsc. For $\lambda > 0$, the resolvent of f of order λ at $x \in \mathcal{H}$ is defined as follows.

$$
J^f_\lambda x := \text{Argmin}_{y \in \mathcal{H}} \{ f(y) + \frac{1}{2\lambda} d^2(x, y) \}.
$$

Well-definedness of J^f_λ was proved by Jost [\[3\]](#page-3-4) and Mayer [\[7\]](#page-3-5). In [[4,](#page-3-6) Theorem 3.1] the authors proved that for an α -weakly convex function f , the resolvent J^f_{λ} $\frac{f}{\lambda}$ *x* exists for all $x \in \mathcal{H}$ and $\lambda < \frac{1}{2\alpha}$.

Theorem 2.2. *Suppose that H is a locally compact Hadamard space and* $f_i: \mathcal{H} \rightarrow]-\infty, +\infty]$ *for* $i = 1, \cdots, N$ are proper, pseudo-convex functions *and lsc. If* $\liminf \lambda_k > 0$ *and* $\bigcap_{i=1}^N \text{Argmin}(f_i) \neq \emptyset$ *. Then the sequence generated by*

$$
x_{k+1} = J_{\lambda_k}^{f_N} \cdots J_{\lambda_k}^{f_1} x_k \tag{2.1}
$$

converges to an element of $\bigcap_{i=1}^{N} \text{Argmin}(f_i)$

Theorem 2.3. Suppose that H is a Hadamard space and f_i : $H \rightarrow] \infty$ ^{*,*} +∞ $]$ *for i* = 1*,* \cdots *,N are proper, convex and lsc. If* liminf λ ^{*k*} > 0 *and ∩ N ⁱ*=1Argmin(*fi*) *̸*= *∅ then the sequence* ([2.1\)](#page-2-0) *converges weakly to an element of* $∩_{i=1}^N$ Argmin (f_i)

Halpern regularization of (2.1) (2.1) gets a strong convergence theorem.

Theorem 2.4. *Suppose that* H *is a Hadamard space and* $f_i : H \rightarrow]-\infty, +\infty]$ *for* $i = 1, \dots, N$ *are* α -weakly convex, quasi-convex and lsc. Let liminf λ_k 0 *and* $\cap_{i=1}^{N}$ Argmin $(f_i) \neq \emptyset$, $u \in \mathcal{H}$ *is arbitrary and* α_k *satisfies the conditions*

- $0 \leq \alpha_k \leq 1$
- *• α^k →* 0 *as k → ∞*
- $\sum_{k=1}^{\infty} \alpha_k = +\infty$

If f_i *for each* $(1 \leq i \leq N)$ *are pseudo-convex functions then the sequence generated by*

$$
x_{k+1} = \alpha_k u \oplus (1 - \alpha_k) J_{\lambda_k}^{f_N} \cdots J_{\lambda_k}^{f_1} x_k
$$

converges strongly to an element $\bigcap_{i=1}^{N} \text{Argmin}(f_i)$

REFERENCES

- 1. M. Bacak, Convex Analysis and Optimization in Hadamard Spaces, De Gruyter Series in Nonlinear Analysis and Applications, 22. De Gruyter, Berlin, 2014.
- 2. F. Bruhat and J. Tits, Groupes réductifs sur un corps local. Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5–251.
- 3. J. Jost, Convex functionals and generalized harmonic maps into spaces of nonpositive curvature. Comment. Math. Helv. 70 (1995), 659-673.
- 4. H. Khatibzadeh and V. Mohebbi, Proximal point algorithm for quasi-convex minimization problems in metric spaces. Numer. Funct. Anal. Optim. 39 (2018), 438-448.
- 5. W. A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces. Nonlinear Anal. 68 (2008), 3689–3696.
- 6. T. C. Lim, Remarks on some fixed point theorems. Proc. Amer. Math. Soc. 60 (1976), 179–182.
- 7. U. F. Mayer, Gradient flows on nonpositively curved metric spaces and harmonic maps, Comm. Anal. Geom. 6 (1998), 199-253.