

ON CONVERGENCE OF ALTERNATING RESOLVENTS FOR A FINITE FAMILY OF PSEUDO-CONVEX FUNCTIONS

HADI KHATIBZADEH, MARYAM MOOSAVI

Department of Mathematics, Zanjan University, Iran hkhatibzadeh@znu.ac.ir; maryam_moosavi@znu.ac.ir

ABSTRACT. In this paper, the strong convergence of the Halpern type and weak convergence of the sequence generated by the product of resolvents of pseudo-convex functions are established in the setting of Hadamard spaces.

1. INTRODUCTION

Let (X, d) be a metric space. A geodesic from x to y is a map γ from the closed interval $[0, d(x, y)] \subset \mathbb{R}$ to X such that $\gamma(0) = x$, $\gamma(d(x, y)) = y$ and $d(\gamma(t), \gamma(t')) = |t - t'|$ for all $t, t' \in [0, d(x, y)]$. The image of a geodesic path is called a geodesic segment, which is denoted by [x, y] whenever it is unique. A metric space (X, d) is called a geodesic space if every two points of X are joined by a geodesic path, and X is said to be uniquely geodesic if every two points of X are joined by exactly one geodesic path. A subset C of X is said to be convex if C includes every geodesic segments joining two of its points. Let $x, y \in X$ and $t \in [0, 1]$, and we write $tx \oplus (1t)y$ for the unique point z in the geodesic segment joining from x to y such that

d(x, z) = (1 - t)d(x, y) and d(z, y) = td(x, y).

A geodesic triangle $\triangle(x_1, x_2, x_3)$ in a geodesic metric space (X, d) consists of

²⁰²⁰ Mathematics Subject Classification. Primary 47B35; Secondary 30H05.

Key words and phrases. Hadamard space, pseudo-convex function, weak convergence.

three vertices (points in X) with unparameterized geodesic segment between each pair of vertices. For any geodesic triangle, there is comparison (Alexandrov) triangle $\overline{\Delta} \subset \mathbb{R}^2$ such that $d(x_i, x_j) = d_{\mathbb{R}^2}(\bar{x}_i, \bar{x}_j)$ for $i, j \in \{1, 2, 3\}$. Let Δ be a geodesic triangle in X and $\overline{\Delta}$ be a comparison triangle for $\overline{\Delta}$, then Δ is said to satisfy the CAT(0) inequality if for all points $x, y \in \Delta$ and $\bar{x}, \bar{y} \in \overline{\Delta}$:

$$d(x,y) \le d_{\mathbb{R}^2}(\bar{x},\bar{y}).$$

Let x, y and z be points in X and y_0 be the midpoint of the segment [y, z]; then, the CAT(0) inequality implies

$$d^{2}(x, y_{0}) \leq \frac{1}{2}d^{2}(x, y) + \frac{1}{2}d^{2}(x, z) - \frac{1}{4}d(y, z).$$
(1.1)

Inequality (1.1) is known as the CN inequality of Bruhat and Titis [2]. A geodesic space X is said to be a CAT(0) space if all geodesic triangles satisfy the CAT(0) inequality. Equivalently, X is called a CAT(0) space if and only if it satisfies the CN inequality. CAT(0) spaces are examples of uniquely geodesic spaces, and complete CAT(0) spaces are called Hadamard spaces.

In a unique geodesic metric space X, a set $A \subset X$, is called convex iff for each $x, y \in A$, $[x, y] \subset A$. A function $f : X \to] - \infty, +\infty]$ is called

(1) proper iff

The domain of f defined by $D(f) := \{x \in X : f(x) < \infty\}$ is nonempty.

(2) lower semicontinuous (for short, lsc) iff

$$\{x \in D(f) : f(x) \le r\},\$$

is closed for each $r \in \mathbb{R}$.

(3) convex iff for all $x, y \in X$ and for all $\lambda \in [0, 1]$

$$f((1-\lambda)x \oplus \lambda y) \le (1-\lambda)f(x) + \lambda f(y).$$

(4) α -weakly convex for some $\alpha > 0$ iff for all $x, y \in X$ and for all $\lambda \in [0, 1]$

$$f((1-\lambda)x \oplus \lambda y) \le (1-\lambda)f(x) + \lambda f(y) + \alpha \lambda (1-\lambda)d^2(x,y).$$

(5) quasi-convex iff for all $x, y \in X$ and for all $\lambda \in [0, 1]$

$$f((1-\lambda)x \oplus \lambda y) \le (1-\lambda)f(x) \le \max\{f(x), f(y)\}$$

(6) pseudo-convex iff f(y) > f(x) implies that there exists $\beta(x, y) > 0$ and $0 < \delta(x, y) \le 1$ such that

$$f(y) - f((1 - \lambda)x \oplus \lambda y) \ge \lambda \beta(x, y), \quad \forall \lambda \in (0, \delta(x, y)).$$

INTEGRAL MEANS

Definition 1.1. Let $\{x_n\}$ be a bounded sequence in a geodesic metric space X. then, the asymptotic center $A(\{x_n\})$ of $\{x_n\}$ is defined by

$$A(\{x_n\}) = \bar{v} \in X : \limsup_{n \to \infty} d(\bar{v}, x_n) = \inf_{x \in v} \limsup_{n \to \infty} d(v, x_n).$$

Definition 1.2. A sequence $\{x_n\}$ in a Hadamard space X is said to be weakly converges to a point $\bar{v} \in X$ if $A(\{x_n\}) = \bar{v}$ for every subsequence $\{x_{n_k}\}$ of $\{x_n\}$. In this case, we write $w - \lim_{n \to \infty} x_n = \bar{v}(\text{see }[1])$.

The concept of weak convergence in metric spaces was first introduced and studied by Lim [6]. Kirk and Panyanak [5] later introduced and studied this concept in CAT(0) spaces and proved that it is very similar to the weak convergence in Banach space setting.

2. MAIN RESULTS

Definition 2.1. Let \mathcal{H} be a Hadamard space and $f_i: \mathcal{H} \to]-\infty, +\infty]$ be convex and lsc. For $\lambda > 0$, the resolvent of f of order λ at $x \in \mathcal{H}$ is defined as follows.

$$J_{\lambda}^{f} x := \operatorname{Argmin}_{y \in \mathcal{H}} \{ f(y) + \frac{1}{2\lambda} d^{2}(x, y) \}.$$

Well-definedness of J_{λ}^{f} was proved by Jost [3] and Mayer [7]. In [4, Theorem 3.1] the authors proved that for an α -weakly convex function f, the resolvent $J_{\lambda}^{f} x$ exists for all $x \in \mathcal{H}$ and $\lambda < \frac{1}{2\alpha}$.

Theorem 2.2. Suppose that \mathcal{H} is a locally compact Hadamard space and $f_i: \mathcal{H} \rightarrow]-\infty, +\infty]$ for $i = 1, \cdots, N$ are proper, pseudo-convex functions and lsc. If $\liminf \lambda_k > 0$ and $\bigcap_{i=1}^N \operatorname{Argmin}(f_i) \neq \emptyset$. Then the sequence generated by

$$x_{k+1} = J_{\lambda_k}^{f_N} \cdots J_{\lambda_k}^{f_1} x_k \tag{2.1}$$

converges to an element of $\bigcap_{i=1}^{N} \operatorname{Argmin}(f_i)$

Theorem 2.3. Suppose that \mathcal{H} is a Hadamard space and $f_i : \mathcal{H} \rightarrow]$ – $\infty, +\infty$] for $i = 1, \dots, N$ are proper, convex and lsc. If $\liminf \lambda_k > 0$ and $\bigcap_{i=1}^{N} \operatorname{Argmin}(f_i) \neq \emptyset$ then the sequence (2.1) converges weakly to an element of $\cap_{i=1}^{N} \operatorname{Argmin}(f_i)$

Halpern regularization of (2.1) gets a strong convergence theorem.

Theorem 2.4. Suppose that \mathcal{H} is a Hadamard space and $f_i : \mathcal{H} \to]-\infty, +\infty]$ for $i = 1, \dots, N$ are α -weakly convex, quasi-convex and lsc. Let $\liminf \lambda_k > 1$ 0 and $\bigcap_{i=1}^{N} \operatorname{Argmin}(f_i) \neq \emptyset$, $u \in \mathcal{H}$ is arbitrary and α_k satisfies the conditions

- $0 \le \alpha_k \le 1$
- $\alpha_k \to 0$ as $k \to \infty$ $\sum_{k=1}^{\infty} \alpha_k = +\infty$

If f_i for each $(1 \le i \le N)$ are pseudo-convex functions then the sequence generated by

$$x_{k+1} = \alpha_k u \oplus (1 - \alpha_k) J_{\lambda_k}^{f_N} \cdots J_{\lambda_k}^{f_1} x_k$$

converges strongly to an element $\bigcap_{i=1}^{N} \operatorname{Argmin}(f_i)$

References

- 1. M. Bacak, Convex Analysis and Optimization in Hadamard Spaces, De Gruyter Series in Nonlinear Analysis and Applications, 22. De Gruyter, Berlin, 2014.
- F. Bruhat and J. Tits, Groupes réductifs sur un corps local. Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5–251.
- 3. J. Jost, Convex functionals and generalized harmonic maps into spaces of nonpositive curvature. Comment. Math. Helv. 70 (1995), 659-673.
- 4. H. Khatibzadeh and V. Mohebbi, Proximal point algorithm for quasi-convex minimization problems in metric spaces. Numer. Funct. Anal. Optim. 39 (2018), 438-448.
- W. A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces. Nonlinear Anal. 68 (2008), 3689–3696.
- T. C. Lim, Remarks on some fixed point theorems. Proc. Amer. Math. Soc. 60 (1976), 179–182.
- U. F. Mayer, Gradient flows on nonpositively curved metric spaces and harmonic maps, Comm. Anal. Geom. 6 (1998), 199-253.