

FIXED POINT THEOREMS FOR CYCLIC WEAK CONTRACTIONS IN MODULAR METRIC SPACES

HOSSEIN RAHIMPOOR[∗]

Department of Mathematics, Payame Noor University P. O. Box 19395-3697, Tehran, Iran

rahimpoor2000@pnu.ac.ir

Abstract. The purpose of this paper is to present some fixed point results for ϕ -contractions in modular metric spaces.

1. INTRODUCTION

The concept of modular spaces was introduced by Nakano [\[10\]](#page-3-0) and was later reconsidered in detail by Musielak and Orlicz [\[8,](#page-3-1) [9\]](#page-3-2). In 2010, Chistyakov [\[2\]](#page-3-3) introduced a new metric structure, which has a physical interpretation and generalized modular spaces and complete metric spaces by introducing modular metric spaces. For more features of concepts of modular metric spaces, see e. g., $\left[1, 3, 4\right]$ $\left[1, 3, 4\right]$ $\left[1, 3, 4\right]$ $\left[1, 3, 4\right]$ $\left[1, 3, 4\right]$. Fixed point theory involves many fields of mathematics and branches of applied science such as functional analysis, mathematical analysis, general topology and operator theory. In 2003, Kirk et al. [\[7\]](#page-3-7) introduced cyclic contraction in metric spaces and investigated the existence of proximity points and fixed points for cyclic contraction mapping. Later, Karapinar and Erhan[\[6\]](#page-3-8) proved the existence of fixed points for various types of cyclic contractions in a metric space. Recently, E. Karapinar in $[5]$ proves a fixed point theorem for an operator T on a complete metric space X when X has a cyclic representation with respect to T . In this paper, we improve and generalized the fixed point results for mappings

²⁰²⁰ Mathematics Subject Classification. Primary: 47H10, 54H25; Secondary: 46A80 Key words and phrases. modular metric space, fixed point, cyclic ϕ -contraction. [∗] Speaker.

2 H. RAHIMPOOR[∗]

satisfying cyclical contractive conditions established by E. Karapinar $[5]$, in modular metric spaces.

Definition 1.1. Let X be an arbitrary set, the function ω : $(0,\infty) \times X \times$ $X \longrightarrow [0,\infty]$ that will be written as $\omega_\lambda(x,y) = \omega(\lambda, x, y)$ for all $x, y \in X$ and for all $\lambda > 0$, is said to be a modular metric on X (or simply a modular if no ambiguity arises) if it satisfies the following three conditions: (i) given $x, y \in X$, $\omega_{\lambda}(x, y) = 0$ for all $\lambda > 0$ if and nonly if $x = y$;

(ii) $\omega_{\lambda}(x, y) = \omega_{\lambda}(y, x)$, for all $\lambda > 0$ and $x, y \in X$;

(iii) $\omega_{\lambda+\mu}(x,y) \leq \omega_{\lambda}(x,z) + \omega_{\mu}(z,y)$ for all $\lambda,\mu > 0$ and $x,y,z \in X$. If instead of (i), we have only the condition:

 $(i_1) \omega_\lambda(x, x) = 0$ for all $\lambda > 0$ and $x \in X$, then ω is said to be a (metric) pseudomodular on X and if ω satisfies (i_1) and

 (i_2) given $x, y \in X$, if there exists $\lambda > 0$, possibly depending on x and y, such that $\omega_{\lambda}(x, y) = 0$ implies that $x = y$, then ω is called a *strict modular* on X .

If instead of (*iii*) we replace the following condition for all $\lambda, \mu > 0$ and $x, y, z \in X;$

$$
\omega_{\lambda+\mu}(x,y) \le \frac{\lambda}{\lambda+\mu}\omega_{\lambda}(x,z) + \frac{\mu}{\lambda+\mu}\omega_{\lambda}(z,y),\tag{1.1}
$$

then ω is called a *convex modular* on X.

Definition 1.2. [\[2\]](#page-3-3) Given a modular ω on X, the sets

$$
X_{\omega} \equiv X_{\omega}(x_{\circ}) = \{ x \in X : \omega_{\lambda}(x, x_{\circ}) \to 0 \text{ as } \lambda \to \infty \}
$$

and

$$
X_{\omega}^* \equiv X_{\omega}^*(x_{\circ}) = \{ x \in X : \omega_{\lambda}(x, x_{\circ}) < \infty \text{ for some } \lambda > 0 \}
$$

are said to be modular spaces (around x_o). Also the modular spaces X_{ω} and X^*_{ω} can be equipped with metrics d_{ω} and d_{ω}^* , generated by ω and given by

$$
d_{\omega}(x, y) = \inf\{\lambda > 0 : \omega_{\lambda}(x, y) \le \lambda\}, \quad x, y \in X_{\omega}
$$

and

$$
d^*_{\omega}(x,y) = \inf\{\lambda > 0 : \omega_{\lambda}(x,y) \le 1\}, \quad x, y \in X^*_{\omega}
$$

If ω is a convex modular on X, then according to [\[2,](#page-3-3) Theorem 3.6] the two modular spaces coincide, $X_{\omega} = X_{\omega}^*$.

Definition 1.3. Given a modular metric space X_ω , a sequence of elements ${x_n}_{n=1}^{\infty}$ from X_{ω} is said to be modular convergent (ω −convergent) to an element $x \in X$ if there exists a number $\lambda > 0$, possibly depending on $\{x_n\}$ and x, such that $\lim_{n\to\infty} \omega_\lambda(x_n, x) = 0$. This will be written briefly as $x_n \stackrel{\omega}{\rightarrow} x$, as $n \rightarrow \infty$.

Definition 1.4. [\[4\]](#page-3-6) A sequence $\{x_n\} \subset X_\omega$ is said to be ω -Cauchy if there exists a number $\lambda = \lambda({x_n}) > 0$ such that $\lim_{m,n\to\infty} \omega_\lambda(x_n,x_m) = 0$, i.e.,

$$
\forall \varepsilon > 0 \ \exists \ n_{\circ}(\varepsilon) \in \mathbb{N} \ \text{such that} \ \forall n, m \ge n_{\circ}(\varepsilon) \ \colon \ \omega_{\lambda}(x_n, x_m) \le \varepsilon.
$$

Modular metric space X_{ω} is said to be ω -complete if each ω -Cauchy sequence from X_ω be modular convergent to an $x \in X_\omega$.

Remark 1.5. A modular $\omega = \omega_{\lambda}$ on a set X, for given $x, y \in X$, is nonincreasing on λ . Indeed if $0 < \lambda < \mu$, then we have

$$
\omega_{\mu}(x,y) \le \omega_{\mu-\lambda}(x,x) + \omega_{\lambda}(x,y) = \omega_{\lambda}(x,y)
$$

for all $x, y \in X$.

2. Main result

Definition 2.1. Let X_{ω} be a modular metric space, $p \in \mathbb{N}$, and $T : X_{\omega} \to$ X_{ω} a map. Then we say that $\cup_{i=1}^p A_i$ (where $A_i \subseteq X_{\omega}$ for all $i \in \{1, 2, ..., p\}$) is a cyclic representation of X with respect to T if and only if the following two conditions hold:

(I)
$$
X_{\omega} = \bigcup_{i=1}^{p} A_i;
$$

(II) $T(A_i) \subseteq A_{i+1}$ for $1 \leq i \leq p-1$, and $T(A_p) \subseteq A_1$.

Definition 2.2. Let X_{ω} be a modular metric space, m a positive integer, $A_1, A_2, ..., A_m$ ω -closed nonempty subset of X_{ω} and $Y = \bigcup_{i=1}^m A_i$ and T : $Y \to Y$ an operator. T is called a cyclic weak ϕ -contraction if (I) $\cup_{i=1}^{m} A_i$ is a cyclic representation of Y with respect to T;

(II) there exists a non-decreasing function $\phi : [0, \infty) \to [0, \infty)$ with $\phi(t) > 0$ for $t \in (0, \infty)$ and $\phi(0) = 0$, such that

$$
\omega_{\lambda}(Tx, Ty) \le \omega_{\lambda}(x, y) - \phi(\omega_{\lambda}(x, y)) \tag{2.1}
$$

for all $\lambda > 0$ and for any $x \in A_i, y \in A_{i+1}, i = 1, 2, ..., m$ where $A_{m+1} = A_1$.

Example 2.3. Let $X_\omega = [0, 1]$, we take a mapping $\omega : (0, \infty) \times [0, 1] \times$ $[0, 1] \to [0, \infty]$ which is defined by $\omega_{\lambda}(x, y) = \frac{|x - y|}{\lambda}$ for all $x, y \in X = X_{\omega}$ and $\lambda > 0$. Consider the ω -closed nonempty subsets of X_{ω} as follow: $A_1 = [0, 1], A_2 = [0, \frac{2}{3}]$ $\frac{2}{3}$, $A_3 = [0, \frac{1}{2}]$ $\frac{1}{2}$, $A_4 = [0, \frac{5}{12}]$ $\frac{5}{12}$, $A_5 = [0, \frac{3}{8}]$ $\frac{8}{8}$ with $X_{\omega} = Y =$ $\cup_{i=1}^{5} A_i$. Let $T: X_{\omega} \to X_{\omega}$ be the mapping defined by $Tx = \frac{3x+1}{6}$ $\frac{1}{6}$. Then, $T(A_1) \subseteq A_2, T(A_2) \subseteq A_3, T(A_3) \subseteq A_4, T(A_4) \subseteq A_5, T(A_5) \subseteq A_1$. And

$$
\omega_{\lambda}(Tx,Ty) = \frac{\left|\frac{3x+1}{6} - \frac{3y+1}{6}\right|}{\lambda} = \frac{1}{\lambda}\left(\frac{|x-y|}{2}\right) \le \omega_{\lambda}(x,y) - \frac{1}{2}\omega_{\lambda}(x,y).
$$

Furthermore, if $\phi : [0, \infty) \to [0, \infty)$ is defined by $\varphi(t) = \frac{t}{2}$, then ϕ is strictly increasing and T is a cyclic weak ϕ -contraction.

Remark 2.4. Rewriting the inequality [1.1](#page-1-0) in the form

$$
(\lambda + \mu)\omega_{\lambda+\mu}(x, y) \le \lambda \omega_{\lambda}(x, z) + \mu \omega_{\mu}(y, z)
$$

we find that the function ω is a convex modular on X if and only if the function $\hat{\omega}(x, y) = \lambda \omega_{\lambda}(x, y)$ for all $\lambda > 0$ and $x, y \in X$, is simply a modular on X, and the function $\lambda \mapsto \hat{\omega}(x, y) = \lambda \omega_{\lambda}(x, y)$ are non-increasing on $(0, \infty)$:

$$
\text{if } 0 < \lambda \leq \mu, \text{ then } \omega_{\mu}(x, y) \leq \frac{\lambda}{\mu} \omega_{\lambda}(x, y) \leq \omega_{\mu}(x, y).
$$

Now, for any $\mu \geq \lambda$ we find $k \in \mathbb{R}_+$ such that $\mu = k\lambda$ and so

$$
\omega_{k\lambda}(x,y) \le \frac{1}{k}\omega_{\lambda}(x,y). \tag{2.2}
$$

Theorem 2.5. Let ω be a convex modular on X such that X_{ω} is a ω -complete modular metric space, m is a positive integer, $A_1, A_2, ..., A_m$ w-closed subsets of X_ω and $Y = \bigcup_{i=1}^m A_i$. Suppose that $\varphi : [0, \infty) \to [0, \infty)$ with $\varphi(t)$ is a non-decreasing function and $\varphi(t) = 0$ only for $t = 0$ and $T : X_\omega \times X_\omega \to X_\omega$ is a cyclic weak φ -contraction where $Y = \bigcup_{i=1}^{m} A_i$ is a cyclic representation of Y with respect to T. Then, T has a unique fixed point $z \in \bigcap_{i=1}^m A_i$.

Theorem 2.6. Let $T: Y \to Y$ be a self mapping as in Theorem [2.5](#page-3-10). (i) If there exists a sequence $\{y_n\}$ in Y with $\lim_{n\to\infty} \omega_\lambda(y_n,Ty_n) = 0$ then $\lim_{n\to\infty}\omega_{\lambda}(y_n,z)=0.$

(ii) If there exists a ω -convergent sequence $\{y_n\}$ in Y with $\lim_{n\to\infty} \omega_{\lambda}(y_{n+1}, Ty_n) = 0$ then there exists $x \in Y$ such that $\lim_{n\to\infty}\omega_{\lambda}(y_n,T^nx)=0.$

REFERENCES

- 1. V. V. Chystyakov, Modular metric spaces generated by F-modulars, Folia Math., 15(2008) 3-24.
- 2. V. V. Chystyakov, Modular metric spaces I: Basic concepts, Nonlinear Analysis, 72(2010) 1-14.
- 3. V. V. Chystyakov, Modular metric spaces II: Application to superposition operators, Nonlinear Analysis, 72(2010) 15-30.
- 4. V. V. Chystyakov, A fixed point theorem for contractions in modular metric spaces, arXive:1112.5561, 1 (2011).
- 5. E. Karapinar,Fixed point theory for cyclic weak φ-contraction, Appl. Math. Lett., 24 (2011) 822825.
- 6. E. Karapinar, I. Erhan, Best proximity on different type contractions, Appl. Math. Inf. Sci., 5(3) (2011) 558-569.
- 7. W. Kirk, P. Srinivasan, P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory, 4(1) (2003) 79-89.
- 8. J. Musielak, W. Orlicz, On modular spaces, Studia Mathematica, 18 (1959) 49-65.
- 9. J. Musielak, W. Orlicz, Some remarks on modular spaces, Bull. Acad. Polon. Sci. Sr. Sci. Math. Astron. Phys., 7 (1959) 661-668.
- 10. H. Nakano, Modular semi-ordered spaces, Tokyo, 1950.