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Abstract. In this paper, we introduce and solve the concept of the
generalized Jensen-type ρ−functional equation. Finally, we investigate
the Hyers-Ulam stability of generalized Jensen-type ρ−functional equa-
tion with Gǎvruta’s control function on orthogonally Banach algebras
approach direct methods.

1. Introduction

A classical question in the sense of functional equation says that ”when
is it true that a function which approximately satisfies a functional equa-
tion must be close to an exact solution of the equation? ” Ulam raised the
stability of functional equations and Hyers was the first one which gave an
affirmative answer to the question of Ulam for additive mapping between
Banach spaces. Th. M. Rassias proved a generalized version of the Hy-
ers’s theorem for approximately additive maps. Gǎvruta generalized these
theorems for approximate additive mappings controlled by the unbounded
Cauchy difference general control function ϕ(x, y). The study of stability
problem of functional equations have been done by several authors on dif-
ferent spaces such as Banach, C∗-Banach algebras and modular spaces (for
example see [2, 3, 4, 6]).
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Recently, Eshaghi Gordji et al. [1] introduced notion of the orthogonal.
The study on orthogonal sets has been done by several authors (for example,
see [5, 7, 8])

Definition 1.1. [1] Let X 6= ∅ and ⊥ ⊆ X × X be a binary relation. If
there exists u0 ∈ X such that for all v ∈ X,

v⊥u0 or u0⊥v,

then ⊥ is called an orthogonally set (briefly O-set). We denote this O-set
by (X,⊥). Let (X,⊥) be an O-set and (X, d) be a generalized metric space,
then (X,⊥, d) is called orthogonally generalized metric space.

Let (X,⊥, d) be an orthogonally metric space.
(i) A sequence {un}n∈N is called orthogonally sequence (briefly O-sequence)
if for any n ∈ N,

un⊥un+1 or un+1⊥un.

(ii) Mapping f : X → X is called ⊥−continuous in u ∈ X if for each O-
sequence {un}n∈N in X with un → u, then f(un) → f(u). Clearly, every
continuous map is ⊥−continuous at any u ∈ X.
(iii) (X,⊥, d) is called orthogonally complete (briefly O-complete) if every
Cauchy O-sequence is convergent to a point in X.
(iv) Mapping f : X → X is called ⊥-preserving if for all u, v ∈ X with u⊥v,
then f(u)⊥f(v).
Consider the orthogonally generalized Jensen-type ρ-functional equation
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such that ρ 6= 0,±1 is a real number and u⊥v, u⊥w, v⊥w.
In this paper, we investigate (1.1) is additive equation and the Hyers-Ulam
of it’s equation approach direct methods with Gǎvruta’s control function.

2. Hyers-Ulam Stability

Throughout this section, let A and B are two orthogonally Banach alge-
bras.
To prove the main theorem, we need the following lemma. Firstly, in the
next lemma, we prove that f is an additive mapping.
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Lemma 2.1. If a mapping f : A→ B satisfies
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for all u, v, w ∈ A with u⊥v, u⊥w, v⊥w, then the mapping f is additive.

In the following theorem, we prove Hyers-Ulam stability of orthogonally
generalized Jensen-type ρ-functional with Gǎvruta’s control function on or-
thogonally Banach algebras.

Theorem 2.2. Let ϕ : A3 → [0,∞) be a function such that

ϕ̃(u, v, w) :=

∞∑
n=0

1

2n
ϕ(2nu, 2nv, 2nw) <∞ (2.2)

Suppose that f : A→ B is a mapping satisfying∥∥∥f(u+ v
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for all u, v, w ∈ A with u⊥v, u⊥w, v⊥w. Then there exist a unique additive
mapping T : A→ B such that

‖f(u)− T (u)‖ ≤ 1

3
ϕ(u, v, w)

for all u ∈ A.

In the next corollary we prove the Hyers-Ulam stability of orthogonally
generalized Jensen-type ρ-functional with Rassias’s control function on or-
thogonally Banach algebras.

Corollary 2.3. Let θ, pi, qi, i = 1, 2, 3 are positive real such that pi < 1 and
qi < 3 . Suppose that f : A→ B is a mapping such that∥∥∥f(u+ v
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for all u, v, w ∈ A with u⊥v, u⊥w, v⊥w. Then there exist a unique additive
mapping T : A→ B such that

‖f(u)− T (u)‖ ≤ θ

3
{ 1
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1

2− 2p2
‖u‖p2 +

1

2− 2p3
‖u‖p3}

for all u ∈ A.
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