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Abstract. Some new results closely related to the generalized Briot-
Bouquet differential subordination are investigatedin in a new approach
for functions with fixed second coefficient.

1. Introduction and preliminaries

Let H be the class of analytic functions in the unit disc U = {z : |z| < 1}.
For a ∈ C and n ∈ N, let define two well-known classes of Analytic functions
as follows.

H[a, n] = {f ∈ H : f(z) = a+ anz
n + · · · , z ∈ U}

and
An = {f ∈ H : f(z) = z + an+1z

n+1, z ∈ U}.
We denote by A = A1 and let S ⊂ A be the class of Univalent functions.
As we know, class S∗, set of Starlike functions and class C, set of Convex
functions are defined by

S∗ =

{
f ∈ A : Re

{
zf ′(z)

f(z)

}
> 0 , z ∈ U

}
,

C =

{
f ∈ A : Re

{
1 +

zf ′′(z)

f ′(z)

}
> 0 , z ∈ U

}
.
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Also, we denote by Hβ[a, b] and An,b sets of analytic functions with fixed
initial coefficient, respectively, as below:

Hβ[a, n] =
{
p ∈ H : p(z) = a+ βzn + an+1z

n+1 + · · ·
}
,

and

An,b = {f ∈ H : f(z) = z + bzn+1 + · · · , z ∈ U}.
where β and b ∈ C are fixed. Here, we assume that β and b are positive real
numbers.

The concept of subordination was introduced to describe a relation be-
tween pairs of analytic functions; Let f(z) and g(z) be members of the class
H. we sayvthat f(z) is subordinate to g(z) and write by f(z) ≺ g(z) if there
exists a function w(z) ∈ H with w(0) = 0, |w(z)| < 1 (z ∈ U), such that
f(z) = g(w(z)) (z ∈ U). It is easy to see that when g(z) is univalent in U,
then

f(0) = g(0) and f(U) ⊆ g(U),

is the equivalent definition of subordination.

The beginning of differential subordination theory began in 1974 by Miller,
Mocanu and Reade [7]. First they proved the following result: if α is real
and p is analytic in the unit disk U with p(0) = 1, then

p(z) + α
zp′(z)

p(z)
≺ 1 + z

1− z
implies p(z) ≺ (1 + z)/(1 − z), which implies properties of the range of a
functions from the range of a combination of the derivative of the functions.
Then in 1981, Miller and Mocanu [6] introduced the analogues differential
subordination and built the theory for this type of differential implications.

Let ψ : C3×U→ C, h be univalent in U. A function p is analytic in U and
called a solution of the differential subordination if it satisfies the (second
order) differential subordination

ψ(p(z), zp′(z), z2p′′(z); z) ≺ h. (1.1)

The univalent function q is called a dominant of the solutions of the dif-
ferential subordination, or simply a dominant, if p ≺ q for all p satisfying
(1.1).

In 2011, Rosihan, Nagpal and Ravichandran [12] extended the theory of
second-order differential subordination for functions with fixed initial coef-
ficient. This led to many results related to the differential subordination
being extended and improved, that recently have published several articles
on the application of this new result(For example, see [1, 2, 3, 4]).

In this paper, by extension of the Nunokawa lemma [9, 10] due to author
et al. [2], some new results closely related to the generalized Briot-Bouquet
differential subordination are investigated in a new approach for functions
with fixed second coefficient. First, we need some of the following funda-
mental definition and theorems.
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Definition 1.1. ([8], [p.24]) Assume that Q is the set of functions q that
are analytic and injective on U \ E(q) with

E(q) :=

{
ζ ∈ ∂U : lim

z→ζ
q(z) =∞

}
.

and are such that q′(ζ) 6= 0 for ζ ∈ ∂U \ E(q).

Lemma 1.2. [12] Let q ∈ Q with q(0) = a, and p ∈ Hβ[a, n] with p(z) 6≡ a.
If p 6≺ q, then there exist points z0 ∈ U and ζ0 ∈ ∂U\E(q) for which

p(z0) = q(ζ0) and p({z : |z| < |z0|}) ⊂ q(U),

and

z0p
′(z0) = mζ0q

′(ζ0).

Moreover

Re

{
1 +

z0p
′′(z0)

p′(z0)

}
≥ m Re

{
1 +

ζ0q
′′(ζ0)

q′(ζ0)

}
, (1.2)

for some

m ≥ n+
|q′(0)| − β|z0|n

|q′(0)|+ β|z0|n
.

Lemma 1.3. [1] Let p ∈ Hβ[1, n] and p(z) 6= 0 in U. If there exist z0 ∈ U
such that |arg p(z)| < πα/2 for |z| < |z0| and |arg p(z0)| = πα/2 where
α > 0. Then we have

z0p
′(z0)

p(z0)
= −iαm , m ≤ −1

2

(
a+

1

a

)(
n+

2α− β
2α+ β

)
when arg p(z0) = −πα

2 and

z0p
′(z0)

p(z0)
= iαm , m ≥ 1

2

(
a+

1

a

)(
n+

2α− β
2α+ β

)
when arg p(z0) = πα

2 where p(z0)
1
α = ±ia and 0 ≤ β ≤ 2α.

2. Main Results

Theorem 2.1. Let B(z) and C(z) be analytic in U with

|Im{C(z)}| < Re{B(z)} (2.1)

If p(z) ∈ Hβ[1, n], 0 ≤ β ≤ 2, and if

|arg{B(z)zp′(z) + C(z)p(z)}| < π

2
+ t(z), (2.2)

where

t(z) =


arg
{
B(z)i

[
2(n+1)+β(n−1)

2+β

]
+ C(z)

}
:= τ when τ ∈ [0, π/2],

arg
{
B(z)i

[
2(n+1)+β(n−1)

2+β

]
+ C(z)

}
− π

2 := τ ′ when τ ′ ∈ (π/2, π],

(2.3)
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then we have

Re{p(z)} > 0. (z ∈ U) (2.4)

Proof. By Lemma 1.3, if Re{p(z)} > 0 does not hold for all z ∈ U, then
there exists a point z0, |z0| < 0, such that

|arg{p(z)}| < π

2
for (|z| < |z0|) and |arg{p(z0)}| =

π

2
,

and
z0p
′(z0)

p(z0)
= −ik

where

k ≤ −
[

2(n+ 1) + β(n− 1)

2 + β

]
when arg{p(z0)} = −π

2
,

and

k ≥
[

2(n+ 1) + β(n− 1)

2 + β

]
when arg{p(z0)} =

π

2
,

where

p(z0) = ±ia and 0 ≤ β ≤ 2.

For the case p(z0) = ia, a > 0, we have

|arg{B(z0)zp
′(z0) + C(z0)p(z0)}| =

∣∣∣∣arg{p(z0) [B(z0)
z0p
′(z0)

p(z0)
+ C(z0)

]}∣∣∣∣
= |arg {p(z0) [B(z0)ik + C(z0)]}| . (2.5)

By (2.1), we have Im{B(z0)ik+C(z0)} > 0. Therefore, from (2.5) we obtain

|arg{B(z0)zp
′(z0) + C(z0)p(z0)}|

= π
2+

{
arg{B(z0)ik + C(z0)} when arg{B(z0)ik + C(z0)} ∈ [0, π/2],

arg{B(z0)ik + C(z0)} − π
2 when arg{B(z0)ik + C(z0)} ∈ (π/2, π]

≥ π
2+


arg
{
B(z0)i

[
2(n+1)+β(n−1)

2+β

]
+ C(z0)

}
:= τ when τ ∈ [0, π/2],

arg
{
B(z0)i

[
2(n+1)+β(n−1)

2+β

]
+ C(z0)

}
− π

2 := τ ′ when τ ′ ∈ (π/2, π]

= π
2 + t(z0).

This contradicts (2.2). For the case p(z0) = −ia, a > 0, the proof runs as
in the first case. �

Remark 2.2. Theorem 2.1 improves a result due to Miller and Mocanu [See
[5], p. 208]. Also, it extends a result due to Nunokawa et al. [See [11], p. 3].
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Corollary 2.3. Let g(z) ∈ Hβ[1, n], 0 ≤ β ≤ 2 with

|Im
{
zg′(z)

g(z)

}
| < 1,

and let f ∈ An,b. Suppose that

|Im{g(z)f ′(z)}| < π

2
+ ν(z), (z ∈ U)

where

ν(z) =


arg
{
i
[
2(n+1)+(β+b)(n−1)

2+β+b

]
+ 1− zg′(z)

g(z)

}
:= λ when λ ∈ [0, π/2],

arg
{
i
[
2(n+1)+(β+b)(n−1)

2+β+b

]
+ 1− zg′(z)

g(z)

}
− π

2 := λ′ when λ′ ∈ (π/2, π].

Then we have

Re

{
g(z)f(z)

z

}
> 0. (z ∈ U)

Proof. We put B(z) = 1, C(z) = 1 − zg′(z)/g(z) and p(z) = g(z)f(z)/z.
Then p(z) ∈ Hβ+b[1, n] and

|Im{C(z)}| < Re{B(z)} = 1. (|z| < |z0|)
Moreover, (2.2) becomes

|arg{g(z)f ′(z)}| < π

2
+ ν(z). (z ∈ U)

Hence, applying Theorem 2.1, we obtain the desired result immediately. �

Remark 2.4. By taking β + b = 2 and n = 1, Corollary 2.3 reduces to a
result obtained by Nunokawa et al. [See [11], p. 5]. Also, it improves a
result due to Miller and Mocanu [See [5], p. 208]

Theorem 2.5. Let B(z) and C(z) be analytic in U with B(z) 6= 0. Suppose
that

Re

{
C(z)

B(z)

}
≥ −T (n, β), (z ∈ U) (2.6)

where

T (n, β) =
n+ 1 + β(n− 1)

1 + β
, (2.7)

for 0 ≤ β ≤ 1 and n ≥ 1. If p(z) ∈ Hβ[0, n], and if

|B(z)zp′(z) + C(z)p(z)| < |B(z) + C(z)|, (z ∈ U) (2.8)

then we have
|p(z)| < 1. (z ∈ U)

Proof. By Lemma 1.2, if p(z) 6≺ z in U, then there exist points

z0 = r0e
iθ ∈ U and ζ0, |ζ0| = 1,

for which
p(z0) = ζ0 and p(|z| < r0) ⊂ U,
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and

z0p
′(z0) = mζ0, for some m ≥ n+

1− β
1 + β

.

We see that m ≥ T (n, β) ≥ 1. Then, by (2.8), we have

|B(z0)z0p
′(z0) + C(z0)p(z0)| = |mB(z0) + C(z0)|

= |B(z0)|
∣∣∣∣m+

C(z0)

B(z0)

∣∣∣∣
≥|B(z0)|

∣∣∣∣T (n, β) + Re

{
C(z0)

B(z0)

}
+ iIm

{
C(z0)

B(z0)

}∣∣∣∣
≥|B(z0)|

∣∣∣∣1 + Re

{
C(z0)

B(z0)

}
+ iIm

{
C(z0)

B(z0)

}∣∣∣∣
= |B(z0) + C(z0)|.

which contradicts (2.8). Therefore, |p(z)| < 1 in U. �

Theorem 2.6. Let B(z) and C(z) be analytic in U with B(z) 6= 0. Suppose
that

Im

{
C(z)

B(z)

}
≥ T (n, β)

|B(z)|
, (z ∈ U) (2.9)

where T (n, β) is the same as (2.7) with 0 ≤ β ≤ 1 and n ≥ 1. If p(z) ∈
Hβ[0, n], and if

|B(z)zp′(z) + C(z)p(z)| <

√
1 + |B(z)|2

[
zp′(z)

p(z)
+ Re

{
C(z)

B(z)

}]2
, (2.10)

in U, then we have
|p(z)| < 1. (z ∈ U)

Proof. Applying the same method as in the proof of Theorem 2.2, if p(z) 6≺ z
in U, then there exist points

z0 = r0e
iθ ∈ U and ζ0, |ζ0| = 1,

for which
p(z0) = ζ0 and p(|z| < r0) ⊂ U,

and
z0p
′(z0)

p(z0)
= m for some m ≥ n+

1− β
1 + β

.

Then we have

|B(z0)z0p
′(z0) + C(z0)p(z0)| = |p(z0)|

∣∣∣∣B(z0)
z0p
′(z0)

p(z0)
+ C(z0)

∣∣∣∣
= |mB(z0) + C(z0)|

= |B(z0)|
∣∣∣∣m+

C(z0)

B(z0)

∣∣∣∣
= |B(z0)|

∣∣∣∣m+ Re

{
C(z0)

B(z0)

}
+ iIm

{
C(z0)

B(z0)

}∣∣∣∣ .



DIFFERENTIAL SUBORDINATION 7

By (2.9), we have

|B(z0)z0p
′(z0) + C(z0)p(z0)| ≥ |B(z0)|

√[
m+ Re

{
C(z0)

B(z0)

}]2
+
T (n, β)2

|B(z0)|2

≥

√
T (n, β)2 + |B(z0)|2

[
m+ Re

{
C(z0)

B(z0)

}]2
≥

√
1 + |B(z0)|2

[∣∣∣∣z0p′(z0)p(z0)

∣∣∣∣+ Re

{
C(z0)

B(z0)

}]2
which contradicts (2.10). Therefore, |p(z)| < 1 in U. �

Remark 2.7. By taking β = n = 1, Theorem 2.5 and Theorem 2.6 reduce
to results obtained by Nunokawa et al. [See [11], p. 6]. Also, it improves a
result due to Miller and Mocanu [See [5], p .206].

Theorem 2.8. Let p(z) ∈ Hβ[1, n] with 0 ≤ β ≤ 1 and n ≥ 1 and

Re

{
2p(z)− zp′′(z)

p′(z)
− 1

}
> 2α, (z ∈ U) (2.11)

Then we have

Re{p(z)} > α, (z ∈ U) (2.12)

where α < 1.

Proof. Let

q(z) =
1− (2α− 1)z

1− z
,

where 0 < α < 1. We know that q is analytic and univalent in U with
q′(0) = 2− 2α and Re{q(U)} > α. So, q ∈ Q with E(q) = 1. If (2.12) does
not hold, means, p(z) 6≺ q(z) in U, then from lemma 1.2 there exists ζ0 on
∂U with p(z0) = q(ζ0) such that z0p

′(z0) = mζ0q
′(ζ0), for some

m ≥ n+
2− 2α− β
2− 2α+ β

,

with 0 ≤ β ≤ 2−2α and n ≥ 1 .We have Re{p(z0)} = Re{q(ζ0)} = α. Also,
by (1.2) we have

Re

{
1 +

z0p
′′(z0)

p′(z0)

}
≥ m Re

{
1 +

ζ0q
′′(ζ0)

q′(ζ0)

}
= m Re

{
1 + ζ0
1− ζ0

}
= 0.

Therefore, we have

Re

{
2p(z0)−

z0p
′′(z0)

p′(z0)
− 1

}
= Re

{
2q(ζ0)−

z0q
′′(z0)

q′(z0)
− 1

}
≤ 2Re{q(ζ0)} = 2α,

which contradicts (2.11). This completes the proof. �

Remark 2.9. Theorem 2.8 improves a result due to Miller and Mocanu [See
[5], p .207].
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Theorem 2.10. If p ∈ Hβ[0, n] with 0 ≤ β ≤ 1 and n ≥ 1, then

|zp′(z)|+
∣∣∣∣z2p′′(z)p(z)

∣∣∣∣ < [n+
1− β
1 + β

]2
(2.13)

implies that |p(z)| < 1.

Proof. By Lemma 1.2, if p(z) 6≺ q(z) = z in U, then there exist points

z0 = r0e
iθ ∈ U and ζ0, |ζ0| = 1,

for which
p(z0) = ζ0 and p(|z| < r0) ⊂ U,

and
z0p
′(z0)

p(z0)
= m, for some m ≥ n+

1− β
1 + β

.

By (1.2) we have

Re

{
1 +

z0p
′′(z0)

p′(z0)

}
≥ m Re

{
1 +

ζ0q
′′(ζ0)

q′(ζ0)

}
= m

Therefore, we have∣∣z0p′(z0)∣∣+

∣∣∣∣z20p′′(z0)p(z0)

∣∣∣∣ =

∣∣∣∣z0p′(z0)p(z0)

∣∣∣∣ [|p(z0)|+ ∣∣∣∣z0p′′(z0)p′(z0)

∣∣∣∣]
=

∣∣∣∣z0p′(z0)p(z0)

∣∣∣∣ [1 +

∣∣∣∣z0p′′(z0)p′(z0)

∣∣∣∣]
≥ m Re

{
1 +

z0p
′′(z0)

p′(z0)

}
≥ m2

≥
[
n+

1− β
1 + β

]2
.

which contradicts (2.13). Therefore, |p(z)| < 1 in U. �

Remark 2.11. By taking β = n = 1, Theorem 2.10 reduces to a result due
to Miller and Mocanu [See [5], p .207].
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