

GENERAL VERSION OF THE SANDOR'S INEQUALITY

BAYAZ DARABY, MOHAMMAD REZA KARIMZADEH*[∗]*

Department of Mathematics, University of Maragheh, P. O. Box 55136-553, Maragheh, Iran

bdaraby@maragheh.ac.ir; mkmk0165@gmail.com

Abstract. In this paper, we show Sandor type inequality for pseudointegrals. Indeed, we state classic version of this inequality for pseudointegrals. Some illustrate examples are given for theorems.

1. INTRODUCTION

The theory of fuzzy measures and fuzzy integral (Sugeno integral) has introduced by Sugeno [[6](#page-3-0)] in his Ph.D. theses on 1974. From 2007, some authors have studied on some others fuzzy integral inequalities. Pseudo-analysis is a generalization of the classical analysis, where instead of the field of real numbers a semiring is taken on a real interval $[a, b] \subseteq [-\infty, +\infty]$ endowed with pseudo-addition *⊕* and with pseudo-multiplication *⊙*. Recently, Daraby et al. generalized Stolarsky, Hardy and Feng Qi type inequalities for pseudointegrals $([2, 3, 4])$ $([2, 3, 4])$ $([2, 3, 4])$ $([2, 3, 4])$ $([2, 3, 4])$ $([2, 3, 4])$ $([2, 3, 4])$.

Sandor's inequality in classical case is the following form.

Theorem 1.1. [\[1\]](#page-3-4) Let $f : [a, b] \to \mathbb{R}$ be a convex and non-negative function. *Then*

$$
\frac{1}{b-a} \int_{a}^{b} f^{2}(x)dx \le \frac{1}{3} \left[f^{2}(a) + f(a)f(b) + f^{2}(b) \right],
$$
\n(1.1)

holds.

[∗] Speaker.

²⁰²⁰ *Mathematics Subject Classification. 35A23, 26E50*

Key words and phrases. Sandor type inequality, Fuzzy integral inequality, Pseudointegral.

2 DARABY, KARIMZADEH*∗*

2. Preliminary

Now, we are going to review some well known results of pseudo-operations, pseudo-analysis and pseudo-additive measures and integrals in details.

Let $[a, b]$ be a closed (in some cases can be considered semi-closed) subinterval of $[-\infty, \infty]$. The full order on [a, b] will be denoted by \preceq .

Definition 2.1. The operation \oplus (pseudo-addition) is a function \oplus : [a, b] \times $[a, b] \rightarrow [a, b]$ which is commutative, non-decreasing (with respect to \preceq), associative and with a zero (neutral) element denoted by **0**, i.e., for each $x \in [a, b], \mathbf{0} \oplus x = x$ holds (usually **0** is either *a* or *b*).

Let $[a, b]_+ = \{x | x \in [a, b], \mathbf{0} \leq x\}.$

Definition 2.2. The operation *⊙* (pseudo-multiplication) is a function *⊙* : $[a, b] \times [a, b] \rightarrow [a, b]$ which is commutative, positively non-decreasing, i.e., *x* \leq *y* implies *x* ⊙ *z* \leq *y* ⊙ *z* for all *z* \in [*a, b*]+, associative and for which there exists a unit element $\mathbf{1} \in [a, b]$, i.e., for each $x \in [a, b]$, $\mathbf{1} \odot x = x$.

We shall consider the semiring $([a, b], \oplus, \odot)$ for two important (with completely different behavior) cases. The first case is when pseudo-operations are generated by a monotone and continuous function $g : [a, b] \rightarrow [0, \infty)$, i.e., pseudo-operations are given with:

$$
x \oplus y = g^{-1}(g(x) + g(x))
$$
 and $x \odot y = g^{-1}(g(x)g(x))$. (2.1)

Then, the pseudo-integral for a function $f : [c, d] \rightarrow [a, b]$ reduces on the *g−*integral

$$
\int_{[c,d]}^{\oplus} f(x)dx = g^{-1}\left(\int_c^d g(f(x))dx\right). \tag{2.2}
$$

The second class is when $x \oplus y = \max(x, y)$ and $x \odot y = g^{-1}(g(x)g(y))$, the pseudo-integral for a function $f : \mathbb{R} \to [a, b]$ is given by

$$
\int_{\mathbb{R}}^{\oplus} f \odot dm = \sup_{x \in \mathbb{R}} (f(x) \odot \psi(x)),
$$

where function ψ defines sup-measure *m*. We denote by μ the usual Lebesgue measure on R. We have

$$
m(A) = \text{ess sup}_{\mu}(x | x \in A) = \sup \{a | \mu(x | x \in A, x > a) > 0 \}.
$$

Theorem 2.3. Let m be a sup-measure on $([0, \infty], \mathbb{B}[0, \infty])$, where $\mathbb{B}([0, \infty])$ *is the Borel* σ -algebra on $[0, \infty]$, $m(A) = \text{ess sup}_{\mu}(\psi(x)|x \in A)$, and ψ : $[0, \infty] \rightarrow [0, \infty]$ *is a continuous function. Then for any pseudo-addition* \oplus *with a generator g there exists a family* m_{λ} *of* \oplus_{λ} *-measure on* ([0, ∞], \mathbb{B}), *where* \bigoplus_{λ} *is a generated by* g^{λ} *(the function g of the power* $\lambda, \lambda \in (0, \infty)$ *) such that* lim *λ→∞* $m_{\lambda} = m$.

Theorem 2.4. *Let* $([0, \infty], \sup \varphi)$ *be a semiring, when* φ *is a generated with g*, *i.e.*, we have $x \odot y = g^{-1}(g(x)g(y))$ for every $x, y \in (0, \infty)$. Let

m be the same as in Theorem [2.3,](#page-1-0) Then there exists a family $\{m_{\lambda}\}\circ f \oplus_{\lambda}$ *-measures, where* \bigoplus_{λ} *is a generated by* $g^{\lambda}, \lambda \in (0, \infty)$ *such that for every continuous function* $f : [0, \infty] \to [0, \infty]$,

$$
\int^{\sup} f \odot dm = \lim_{\lambda \to \infty} \int^{\oplus \lambda} f \odot dm_{\lambda} = \lim_{\lambda \to \infty} (g^{\lambda})^{-1} \left(\int g^{\lambda}(f(x)) dx \right). \tag{2.3}
$$

3. Main Results

In this section, we express Sandor's inequality for pseudo-integrals.

Theorem 3.1. Let $f : [a, b] \rightarrow [c, d]$ be a continuous, convex and non*negative function and* $g : [c, d] \rightarrow [0, \infty)$ *be a continuous and increasing function. Then*

$$
\left(\frac{1}{b-a}\right)g\left(\int_{[a,b]}^{\oplus}f_{\odot}^{2}(x)dx\right)\leq\frac{1}{3}g\left(\left[f_{\odot}^{2}(a)\oplus f(a)\odot f(b)\oplus f_{\odot}^{2}(b)\right]\right), (3.1)
$$

holds.

Corollary 3.2. Let $f : [0,1] \rightarrow [c,d]$ be a continuous, convex and non*negative function and* $g : [c, d] \rightarrow [0, \infty)$ *be a continuous and increasing function. Then*

$$
\left(\frac{1}{b-a}\right)g\left(\int_{[0,1]}^{\oplus}f_{\odot}^{2}(x)dx\right) \leq \frac{1}{3}g\left[f_{\odot}^{2}(0) \oplus f(0) \odot f(1) \oplus f_{\odot}^{2}(1)\right], \quad (3.2)
$$

holds.

Example 3.3. Let *f* and *g* are defined from [0, 1] to [0, 1] by $f(x) = x^2$ and **Example 3.3.** Let *f* and $g(x) = \sqrt{x}$. Then we have

$$
\frac{1}{4} = \frac{1}{1-0} \int_{[0,1]}^{\oplus} f_{\odot}^{2}(x) dx \le \frac{1}{3} g \left[f_{\odot}^{2}(0) \oplus f(0) \odot f(1) \oplus f_{\odot}^{2}(1) \right] = \frac{1}{3}.
$$

We can not remove the assumption g is increasing in Theorem [3.1.](#page-2-0) The following example shows this fact.

Example 3.4. Let $f(x) = \sqrt{x}$ and $g(x) = \sqrt{1-x}$. Then we have

$$
\frac{5}{6} = \frac{1}{1-0} \int_{[0,1]}^{\oplus} f_{\odot}^{2}(x) dx \nleq \frac{1}{3} g \left[f_{\odot}^{2}(0) \oplus f(0) \odot f(1) \oplus f_{\odot}^{2}(1) \right] = \frac{1}{3}.
$$

Theorem 3.5. Let $f : [a, b] \rightarrow [a, b]$ be a measurable comonotone function *and* ([*a, b*]*,*sup*, ⊙*) *be a simiring and m be the same as Theorems [2.3](#page-1-0) and [2.4.](#page-1-1) If g is the continuous and increasing function, then the following inequality is holds*

$$
\left(\frac{1}{b-a}\right)g\left(\int_{[a,b]}^{\text{sup}}f_{\odot}^2(x)dx\right) \le \frac{1}{3}g\left[f_{\odot}^2(a)\oplus f(a)\odot f(b)\oplus f_{\odot}^2(b)\right],\quad(3.3)
$$

holds.

4 DARABY, KARIMZADEH*∗*

REFERENCES

- 1. J. Caballero,K. Sadaragani, *Sandor's inequality for Sugeno integrals, Applied Mathematics and Computation*, **218** (2011) 1617-1622.
- 2. B. Daraby, *Generalization of the Stolarsky type inequality for pseudo-integrals*, Fuzzy Sets and Systems, **194** (2012) 90-96.
- 3. B. Daraby, H. G. Asll, I. Sadeqi, *General related inequalities to Carlson-type inequality for the Sugeno integral*, Applied Mathematics and Computation, **305** (2017) 323-329.
- 4. B. Daraby, R. Mesiar, F. Rostampour, A. Rahimi, *Related Thunsdorff type and Frank-Pick type inequalities for Sugeno integral*, Applied Mathematics and Computation, **414** (2022) 126683.
- 5. D. Ralescu, G. Adams, *The fuzzy integral*, Journal of Mathematical Analysis and Applications, **75** (1980) 562-570.
- 6. M. Sugeno, *Theory of Fuzzy Integrals and its Applications, (Ph. D. dissertation)*, Tokyo Institute of Technology, 1974.