

MOUNTAIN PASS SOLUTION FOR A p(x)-BIHARMONIC KIRCHHOFF TYPE EQUATION

MARYAM MIRZAPOUR

Department of Mathematics, Faculty of Mathematical Sciences, Farhangian University, Tehran, Iran m.mirzapour@cfu.ac.ir

ABSTRACT. In this paper we deal with the existence of weak solution for a p(x)-Kirchhoff type problem of the following form

$$\begin{cases} -\left(a-b\int_{\Omega}\frac{1}{p(x)}|\Delta u|^{p(x)}\,dx\right)\Delta(|\Delta u|^{p(x)-2}\Delta u) = \lambda|u|^{p(x)-2}u + g(x,u) & \text{ in }\Omega,\\ u = \Delta u = 0 & \text{ on }\partial\Omega. \end{cases}$$

Using the Mountain Pass Theorem, we establish conditions ensuring the existence result.

1. INTRODUCTION

In this paper we study the following problem

$$\begin{cases} -\left(a-b\int_{\Omega}\frac{1}{p(x)}|\Delta u|^{p(x)}\,dx\right)\Delta(|\Delta u|^{p(x)-2}\Delta u) = \lambda|u|^{p(x)-2}u + g(x,u) & \text{in }\Omega,\\ u=\Delta u=0 & \text{on }\partial\Omega. \end{cases}$$
(1.1)

where $\Omega \subset \mathbb{R}^N$, $N \geq 2$ is a bounded smooth domain with smooth boundary $\partial\Omega$, $p(x) \in C(\overline{\Omega})$, a, b > 0 are constants, g is a continuous function, λ is a real parameter. Suppose that the nonlinearity $g(x,t) \in C(\overline{\Omega}, \mathbb{R})$ satisfies the following assumptions:

²⁰²⁰ Mathematics Subject Classification. 46E35, 35D30, 35J60, 35A15.

 $Key\ words\ and\ phrases.\ p(x)\mbox{-biharmonic}$ equation, Kirchhoff type problems, Mountain Pass Theoem .

M. MIRZAPOUR

(g1) $g: \Omega \times \mathbb{R} \to \mathbb{R}$ satisfies the Carathéodory condition and the subcritical growth condition, i.e. there exists a constant $c_{\geq}0$ such that

$$|g(x,s)| \le c_1(1+|s|^{q(x)-1})$$

for all $(x,t) \in \Omega \times \mathbb{R}$ where $q(x) \in C_+(\overline{\Omega})$ and $q(x) < p_k^*(x)$. (g₂) $g(x,s) = o(|s|^{p(x)-2}s)$ as $s \to 0$ uniformly with respect to $x \in \Omega$.

(g₃) There exist M > 0 and $\theta \in \left(p^+, \frac{2(p^-)^2}{p^+}\right)$ such that $0 < \theta G(x, s) \le sg(x, s)$, for all $|s| \ge M$ and $x \in \Omega$ where $G(x, t) = \int_0^s g(x, \tau) d\tau$.

We mainly consider a new Kirchhoff problem involving the p(x)-biharmonic errator, that is, the form with a poplocal coefficient $(a-b\int_{-1}^{-1}|\Delta u|^{p(x)} dx)$

operator, that is, the form with a nonlocal coefficient $(a-b\int_{\Omega}\frac{1}{p(x)}|\Delta u|^{p(x)} dx)$. Its background is derived from nagative Young's modulus, when the atoms are pulled apart rather than compressed together and the strain is negative. Recently, the authors in [6] first studied this kind of problem

$$\begin{cases} -\left(a-b\int_{\Omega}|\nabla u|^{2}\,dx\right)\Delta u=\lambda|u|^{p-2}u & \text{in }\Omega,\\ u=0 & \text{on }\partial\Omega, \end{cases}$$

where 2 , and they obtained the existence of solutions by using the mountain pass theorem. Furthermore, some interesting results have been obtained for this kind of Kirchhoff-type problem. We refer the readers to [1, 5, 7] and the references therein.

Now, we state our main result:

Theorem 1.1. Assume that the function $q \in C(\overline{\Omega})$ satisfies

$$1 < p^{-} < p(x) < p^{+} < 2p^{-} < q^{-} < q(x) < p_{k}^{*}(x) := \frac{Np(x)}{N - kp(x)}.$$

Then for any $\lambda \in \mathbb{R}$, with $(\mathbf{g_1})$ - $(\mathbf{g_3})$ satisfied, problem (1.1) has a nontrivial weak solution.

2. NOTATIONS AND PRELIMINARIES

Let Ω be a bounded domain of \mathbb{R}^N , denote $C_+(\overline{\Omega}) = \{p(x); p(x) \in C(\overline{\Omega}), p(x) > 1, \forall x \in \overline{\Omega}\}, p^+ = \max\{p(x); x \in \overline{\Omega}\}, p^- = \min\{p(x); x \in \overline{\Omega}\}; L^{p(x)}(\Omega) = \{u : \Omega \to \mathbb{R} \text{ measurable and } \int_{\Omega} |u(x)|^{p(x)} dx < \infty\}, \text{ with the norm } |u|_{L^{p(x)}(\Omega)} = |u|_{p(x)} = \inf\left\{\mu > 0; \int_{\Omega} \left|\frac{u(x)}{\mu}\right|^{p(x)} dx \le 1\right\}.$

Proposition 2.1 (See [3]). The space $(L^{p(x)}(\Omega), |\cdot|_{p(x)})$ is separable, uniformly convex, reflexive and its conjugate space is $L^{q(x)}(\Omega)$ where q(x) is the conjugate function of p(x), i.e., $\frac{1}{p(x)} + \frac{1}{q(x)} = 1$, for all $x \in \Omega$. For $u \in L^{p(x)}(\Omega)$ and $v \in L^{q(x)}(\Omega)$, we have $|\int_{\Omega} uv \, dx| \leq \left(\frac{1}{p^-} + \frac{1}{q^-}\right) |u|_{p(x)}|v|_{q(x)} \leq 2|u|_{p(x)}|v|_{q(x)}$.

 $\mathbf{2}$

The Sobolev space with variable exponent $W^{k,p(x)}(\Omega)$ is defined as follows: $W^{k,p(x)}(\Omega) = \{u \in L^{p(x)}(\Omega) : D^{\alpha}u \in L^{p(x)}(\Omega), |\alpha| \leq k\}, \text{ where } D^{\alpha}u = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \dots \partial x_N^{\alpha_N}} u, \text{ with } \alpha = (\alpha_1, \dots, \alpha_N) \text{ is a multi-index and } |\alpha| = \sum_{i=1}^N \alpha_i.$ The space $W^{k,p(x)}(\Omega)$ equipped with the norm $||u||_{k,p(x)} = \sum_{|\alpha| \leq k} |D^{\alpha}u|_{p(x)},$ also becomes a separable and reflexive Banach space. For more details, we refer the reader to [3, 2].

Proposition 2.2 (See [3]). For $p, r \in C_+(\overline{\Omega})$ such that $r(x) \leq p_k^*(x)$ for all $x \in \overline{\Omega}$, there is a continuous embedding $W^{k,p(x)}(\Omega) \hookrightarrow L^{r(x)}(\Omega)$. If we replace \leq with <, the embedding is compact.

We denote by $W_0^{k,p(x)}(\Omega)$ the closure of $C_0^{\infty}(\Omega)$ in $W^{k,p(x)}(\Omega)$. Note that the weak solutions of problem (1.1) are considered in the generalized Sobolev space $X = W^{2,p(x)}(\Omega) \cap W_0^{1,p(x)}(\Omega)$ equipped with the norm $||u|| = \inf \left\{ \mu > 0 : \int_{\Omega} \left| \frac{\Delta u(x)}{\mu} \right|^{p(x)} dx \leq 1 \right\}.$

Remark 2.3. According to [4], the norm $\|\cdot\|_{2,p(x)}$ is equivalent to the norm $|\Delta \cdot|_{p(x)}$ in the space X. Consequently, the norms $\|\cdot\|_{2,p(x)}$, $\|\cdot\|$ and $|\Delta \cdot|_{p(x)}$ are equivalent.

We consider the functional $\rho(u) = \int_{\Omega} |\Delta u|^{p(x)} dx$ and give the following fundamental proposition.

Proposition 2.4 (See [?]). For $u \in X$ and $u_n \subset X$, we have

- $(1) ||u|| < 1 (respectively = 1; > 1) \Longleftrightarrow \rho(u) < 1 (respectively = 1; > 1);$
- (2) $||u|| \le 1 \Rightarrow ||u||^{p^+} \le \rho(u) \le ||u||^{p^-};$
- (3) $||u|| \ge 1 \Rightarrow ||u||^{p^-} \le \rho(u) \le ||u||^{p^+};$
- (4) $||u_n|| \to 0$ (respectively $\to \infty$) $\iff \rho(u_n) \to 0$ (respectively $\to \infty$).

3. Proof of Theorem 1.1

We say $u \in X$ is a weak solution of (1.1), if

$$(a - b \int_{\Omega} \frac{1}{p(x)}) |\Delta u|^{p(x)} dx \int_{\Omega} |\Delta u|^{p(x)-2} \Delta u \Delta \varphi \, dx - \lambda \int_{\Omega} |u|^{p(x)-2} u\varphi \, dx = \int_{\Omega} g(x, u) \varphi \, dx,$$

where $\varphi \in X$. The energy functional $J: X \to \mathbb{R}$ associated with problem

$$J(u) = a \int_{\Omega} \frac{1}{p(x)} |\Delta u|^{p(x)} dx - \frac{b}{2} \left(\int_{\Omega} \frac{1}{p(x)} |\Delta u|^{p(x)} dx \right)^2$$
(3.1)
$$-\lambda \int_{\Omega} \frac{1}{p(x)} |u|^{p(x)} dx - \int_{\Omega} G(x, u) dx$$

for all $u \in X$ is well defind and of class C^1 in X. Moreover, we have

M. MIRZAPOUR

$$\langle J'(u), \varphi \rangle = (a - b \int_{\Omega} \frac{1}{p(x)} |\Delta u|^{p(x)} dx) \int_{\Omega} |\Delta u|^{p(x)-2} \Delta u \Delta \varphi dx$$
$$- \lambda \int_{\Omega} |u|^{p(x)-2} u\varphi dx - \int_{\Omega} g(x, u)\varphi dx. \tag{3.2}$$

Hence, we can observe that the critical points of J are weak solutions of problem (1.1).

Definition 3.1. Let $(X, \|\cdot\|)$ be a Banach space and $J \in C^1(X)$. We say that J satisfies the Palais-Smale condition at level c $((PS)_c \text{ in short})$ if any sequence $\{u_n\} \subset X$ satisfying $J(u_n) \to c$ and $J'(u_n) \to 0$ in X^* as $n \to \infty$, has a convergent subsequence.

Lemma 3.2. Assume that $(\mathbf{g_1})$ - $(\mathbf{g_3})$ hold. Then the functional J satisfies the $(PS)_c$ condition, where $c < \frac{a^2}{2b}$.

Lemma 3.3. Assume that g satisfies (g_1) - (g_3) . Then J satisfies the Mountain Pass geometry, that is,

- (i) there exists $\rho, \alpha > 0$ such that $J(u) \ge \alpha > 0$, for any $u \in X$ with $||u|| = \rho$.
- (ii) there exists $e \in X$ with $||e|| > \rho$ such that J(e) < 0.

By Lemmas 3.2, 3.3 and the fact that J(0) = 0, J satisfies the Mountain Pass Theorem. Therefor, problem (1.1) has indeed a nontrivial wave solution.

References

- G. A. Afrouzi, M. Mirzapour, N.T. Chung, Existence and multiplicity of solutions for Kirchhoff type problems involving p(·)-Biharmonic operators, Z. Anal. Anwend., 33 (2014), 289-303.
- X. L. Fan, X. Fan, A Knobloch-type result for p(t) Laplacian systems, J. Math. Anal. Appl., 282 (2003), 453-464.
- X. L. Fan, D. Zhao, On the spaces L^{p(x)} and W^{m,p(x)}, J. Math. Anal. Appl., 263 (2001), 424-446.
- A. Zang, Y. Fu, Interpolation inequalities for derivatives in variable exponent Lebesgue-Sobolev spaces, Nonlinear Anal. T.M.A., 69 (2008), 3629-3636.
- X. Qian, W. Chao, Existence of positive solutions for a nonlocal problems with indefinite nonlinearity, Bound. Value Probl., 40 (2020).
- G. Yin, J. Liu, Existence and multiplicity of nontrivial solutions for a nonlocal problem, Bound. Value Probl., 26 (2015).
- Z. Zhang, Y. Song, High perturbation of a new Kirchhoff problem involving the p-Laplace operator, Boundary Value Problems, 98 (2021), https://doi.org/10.1186/s13661-021-01566-x.