

RANGE OF IDEMPOTENT ADJOINTABLE OPERATORS **ON HILBERT** C*-MODULES

R. ESKANDARI

Department of Mathematics, Farhangian University, Iran; rasoul.eskandari@cfu.ac.ir

ABSTRACT. Let T and S be idempotent adjointable operators on the Hilbert C^* -module \mathcal{H} over a C^* -algebra \mathcal{A} . We establish that if there exist constants $\alpha_1, \alpha_2 > 0$ such that for all $x \in R(T)$ and $y \in \mathcal{R}(S)$

 $|x+y| \ge \alpha_1 |x|$ and $|x+y| \ge \alpha_2 |y|$,

then $\mathcal{R}(T) \cap \mathcal{R}(S) = \{0\}$ and $\mathcal{R}(T) + \mathcal{R}(S)$ is orthogonality complemented submodule of \mathcal{H} . We also show that if Π_1, Π_2 are idempotents in $\mathcal{L}(\mathcal{E})$ such that $\mathcal{R}(\Pi_1) \cap \mathcal{R}(\Pi_2) = \{0\}$ and $\mathcal{R}(\Pi_1) + \mathcal{R}(\Pi_2)$ is an orthogonally complemented submodule of \mathcal{E} , Then $\mathcal{R}(\Pi_1 + \Pi_2)$ is closed in \mathcal{E} if and only if $\mathcal{R}(\Pi_1 - \Pi_2)$ is closed in \mathcal{E} .

Acknowledgment. This is a joint work with Professors W. Luo, M.S. Moslehian, Q. Xu, and H. Zhang.

1. INTRODUCTION

Let \mathcal{A} be a C^* -algebra. A pre-Hilbert C^* -module \mathcal{H} over \mathcal{A} is a right \mathcal{A} -module equipped with a sesquilinear map $\langle \cdot, \cdot \rangle : \mathcal{H} \times \mathcal{H} \to \mathcal{A}$ satisfying:

- $\begin{array}{ll} (1) \ \langle x,x\rangle \geq 0, \ x\in \mathcal{X}; \ \langle x,x\rangle = 0 \ \text{if and only if } x=0. \\ (2) \ \langle x,y\rangle^* = \langle y,x\rangle, \ x,y\in \mathcal{X}. \end{array}$
- (3) $\langle x, ya \rangle = \langle x, y \rangle a, \ x, y \in \mathcal{X}, \ a \in \mathcal{A}.$

If the norm defined by $||x||^2 = ||\langle x, x \rangle||$ for all $x \in \mathcal{X}$ is complete we say \mathcal{X} is a Hilbert C^{*}-module. Suppose that \mathcal{H} and \mathcal{K} are Hilbert C^{*}-modules. Let

²⁰⁰⁰ Mathematics Subject Classification. Primary 47A05; Secondary 47A30.

Key words and phrases. Idempotent, Range Projection , Hilbert C^* -module.

R. ESKANDARI

 $\mathcal{L}(\mathcal{H},\mathcal{K})$ be the set of all maps $T:\mathcal{H}\to\mathcal{K}$ for which there is an application $T^*:\mathcal{H}\to\mathcal{K}$ such that

$$\langle Tx, y \rangle = \langle x, T^*y \rangle, \quad x \in \mathcal{H}, y \in \mathcal{K}.$$
 (1.1)

With the abbreviation we denote by $\mathcal{L}(\mathcal{H}, \mathcal{H}) = \mathcal{L}(\mathcal{H})$. We denote by $\mathcal{R}(T)$ and $\mathcal{N}(T)$ the range and nullity of an operator T, respectively. Let \mathcal{M} be a closed submodule of \mathcal{X} . Then we set

$$\mathcal{M}^{\perp} := \{ x \in \mathcal{X}; \langle x, y \rangle = 0, y \in \mathcal{M} \} .$$

We say that \mathcal{M} is an orthogonally complemented submodule of \mathcal{X} if $\mathcal{X} = \mathcal{M} + \mathcal{M}^{\perp}$. A closed submodule \mathcal{M} is not necessarily orthogonally complemented. If $T \in \mathcal{L}(\mathcal{X})$ has closed range, it is known that $\mathcal{R}(T)$ and $\mathcal{N}(T)$ are orthogonally complemented. The study of the properties of Hilbert C^* -modules and also the investigation of the facts that have been established in the Hilbert space and their generalization to the Hilbert C^* -module have been of interest to mathematical researchers, for examples see [3, 5]. For each idempotent operator Π ,

$$\mathcal{R}(\Pi) \cap \mathcal{R}(I - \Pi) = 0 \text{ and } \mathcal{R}(\Pi) + \mathcal{R}(I - \Pi) = \mathcal{E}.$$
 (1.2)

A problem is that if Π_1 and Π_2 are idempotent operator, then do we have $\overline{\mathcal{R}(\Pi_1) + \mathcal{R}(\Pi_2)}$ is orthogonally complemented submodule? In the Hilbert space case we have the classic criteria of closeness for the sum of a couple of subspaces.

Theorem 1.1. [4, Propsitin 2.1], [1, Theorem 13] Let \mathcal{H}_1 and \mathcal{H}_2 be closed subspaces of \mathcal{H} . The following conditions are equivalent:

- (1) $\mathcal{H}_1 + \mathcal{H}_2$ is closed;
- (2) $||P_1P_2 P_{\mathcal{H}_1 \cap \mathcal{H}_2}|| < 1;$

(3) $\mathcal{H}_1^{\perp} + \mathcal{H}_2^{\perp}$ is closed;

- (4) $\mathcal{R}((I P_1)P_2)$ is closed;
- (5) $\mathcal{R}(I P_1P_2)$ is closed;

2. MAIN RESULTS

Let \mathcal{M} and \mathcal{N} be subspaces of a Hilbert space \mathcal{H} . Recall that the cosine of angle between \mathcal{M} and \mathcal{N} defined as follows:

$$c_0(\mathcal{M}, \mathcal{N}) := \sup \left\{ \| \langle x, y \rangle \| : x \in \mathcal{M}, y \in \mathcal{N}, \| x \| \le 1, \| y \| \le 1 \right\}.$$

We have the following characterization in Hilbert spaces:

Theorem 2.1. [1, Theorem 12] The following statements are equivalent.

- (1) $c_0(\mathcal{M},\mathcal{N}) < 1;$
- (2) $\mathcal{M} \cap \mathcal{N} = \{0\}$ and $\mathcal{M} + \mathcal{N}$ is closed;
- (3) There exist a constant $\alpha > 0$ such that

$$\|x+y\| \ge \alpha_1 \|x\| \quad (x \in \mathcal{M}, y \in \mathcal{N}).$$

$$(2.1)$$

In [2], it is defined the *separated pair* of the closed submodules of a Hilbert C^* -modules.

 $\mathbf{2}$

Definition 2.2. Let \mathcal{H} and \mathcal{K} be closed submodules of \mathcal{E} . Then we say that $(\mathcal{H}, \mathcal{K})$ is a *separated pair* if

 $\mathcal{H} \cap \mathcal{K} = 0$ and $\mathcal{H} + \mathcal{K}$ is orthogonally complemented in \mathcal{E} . (2.2)

Now we give the following result.

Theorem 2.3. Let \mathcal{H} and \mathcal{K} be orthogonally complemented closed submodules of \mathcal{E} . The following statements are equivalent:

- (i) $(\mathcal{H},\mathcal{K})$ is a separated pair of orthogonally complemented submodules.
- (ii) There are idempotents Π_1 and Π_2 in $\mathcal{L}(\mathcal{E})$ such that $\Pi_1 \Pi_2 = \Pi_2 \Pi_1 = 0$, $\mathcal{R}(\Pi_1) = \mathcal{H}$ and $\mathcal{R}(\Pi_2) = \mathcal{K}$.
- (iii) There is an idempotent $\Pi \in \mathcal{L}(\mathcal{E})$ such that $\mathcal{R}(\Pi) = \mathcal{H}$ and $\mathcal{K} \subseteq \mathcal{N}(\Pi)$.

Corollary 2.4. Let \mathcal{H} and \mathcal{K} be orthogonally complemented closed submodules of \mathcal{E} . Then $(\mathcal{H}, \mathcal{K})$ is a separated pair if and only if there exist constants $\alpha_1, \alpha_2 > 0$ such that $|x + y| \ge \alpha_1 |x|$ and $|x + y| \ge \alpha_2 |y|$ $(x \in \mathcal{H}, y \in \mathcal{K})$.

Theorem 2.5. Let Π_1, Π_2 be idempotents in $\mathcal{L}(\mathcal{E})$ such that $(\mathcal{R}(\Pi_1), \mathcal{R}(\Pi_2))$ is a separated pair of orthogonally complemented submodules of \mathcal{E} . Then $\mathcal{R}(\Pi_1 + \Pi_2)$ is closed in \mathcal{E} if and only if $\mathcal{R}(\Pi_1 - \Pi_2)$ is closed in \mathcal{E} .

The following example shows that the separation condition in Theorem 2.5 is necessary.

Example 2.6. Let \mathcal{K} be a separable Hilbert space and let T be a non closed range operator on \mathcal{K} . Let $\mathcal{E} = \mathcal{K} \oplus \mathcal{K}$ and define idempotent operators Π_1 and Π_2 on \mathcal{E} by

$$\Pi_1 = \left(\begin{array}{cc} I & 0\\ 0 & 0 \end{array}\right), \quad \Pi_2 = \left(\begin{array}{cc} I & 0\\ T & 0 \end{array}\right).$$

Note that $\mathcal{R}(\Pi_1) = \mathcal{K} \oplus 0$ and $\mathcal{R}(\Pi_2) = \{x \oplus Tx :\in \mathcal{K}\}$. Then $\mathcal{R}(\Pi_1) + \mathcal{R}(\Pi_2) = \mathcal{K} \oplus \mathcal{R}(T)$. This shows that $(\mathcal{R}(\Pi_1), \mathcal{R}(\Pi_2))$ is not separated pair of closed subspaces in \mathcal{E} . Since $\mathcal{R}(\Pi_1 - \Pi_2) = 0 \oplus \mathcal{R}(T)$, so $\mathcal{R}(\Pi_1 - \Pi_2)$ is not a closed subspace. Furthermore, the equation $\mathcal{R}(\Pi_1 + \Pi_2) = \{2x \oplus Tx :\in \mathcal{K}\}$ yields that $\mathcal{R}(\Pi_1 + \Pi_2)$ is a closed subspace in \mathcal{E} .

Acknowledgment. This is a joint work with Professors W. Luo, M.S. Moslehian, Q. Xu, and H. Zhang.

References

- F. Deutsch, The angle between subspaces of a Hilbert space, Approximation theory, wavelets and applications (Maratea, 1994), 107–130, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 454, Kluwer Acad. Publ., Dordrecht, 1995.
- R. Eskandari, W. Luo, M.S. Moslehian, Q. Xu, H. Zhang Separated Pairs of Submodules in Hilbert C^{*}-modules, Linear Multilinear Algebra, submitted.
- R. Eskandari, M. Frank, V. M. Manuilov, and M. S. Moslehian, B-Spline Interpolation Problem In Hilbert C^{*}-Modules, J. Operator Theory 86:2(2021), 275–298.
- I. S. Feshchenko, On Closeness Of The Sum Of n Subspaces Of a Hilbert Space, Ukrain. Math. J., 63, No. 10, (2012) 1566-1621.

R. ESKANDARI

- V. Manuilov, M. S. Moslehian, And Q. Xu, Doulas Factorization Theorem Revisited, Proc. Amer. Math. Soc. 148 (2020), no. 3, 1139–1151.
- 4