

HIGHER ORDER EXPONENTIALLY ISOMETRIC OPERATORS

KARIM HEDAYATIAN, MARYAM SALEHI[∗]

Department of Mathematics, College of Sciences, Shiraz University, Shiraz 7146713565, Iran

hedayati@shirazu.ac.ir, k.salehi@shirazu.ac.ir

ABSTRACT. For a positive integer m , a bounded linear operator T on a Hilbert space is called an exponentially m -isometric operator if $\sum_{k=0}^{m}(-1)^{m-k}\binom{m}{k}e^{kT^*}e^{kT}=0$. We show that for every non-empty compact subset K of pure imaginary axis, there exits an exponentially m isometric operator T whose spectrum is K. Moreover, if $(T_n)_{n\geq 1}$ is a sequence of operators in this class that converges to T in the strong operator topology, then T is also an exponentially m -isometric operator.

1. INTRODUCTION

Throughout the paper, H stands for a Hilbert space and $B(H)$ denotes the space of all bounded linear operators on H . For a positive integer m , an operator $T \in B(H)$ is called an m-isometry if it satisfies the operator equation

$$
\beta_m(T):=\sum_{k=0}^m(-1)^{m-k}\binom{m}{k}T^{*k}T^k=0
$$

where T^* denotes the adjoint operator of T . Since the pioneer work of Agler [?], the study of m-isometries has become an active area of research

²⁰²⁰ Mathematics Subject Classification. Primary 47A62; Secondary 47A16

Key words and phrases. Exponentially m-isometric operator, Skew-m-selfadjoint operator, Exponentially isometric-m-Jordan operator.

[∗] Speaker.

in operator theory. Their applications to differential operator, disconjugacy and Brownian motion have been discussed in [?]. For more investigation on m-isometric operators one can see [?, ?].

An operator T is called an exponentially m-isometry if $\exp T$ is an misometric operator. Exponentially 1-isometric operators are simply exponentially isometries. The set of all exponentially m-isometric operators will be denoted by E_m . In [?] it has been proved that every m-isometry is an $(m + 1)$ -isometry and every invertible 2m-isometry is a $(2m - 1)$ -isometry which implies that $E_{2m} = E_{2m-1}$.

Recall that $T \in B(H)$ is called an *m*-selfadjoint operator if

$$
\sum_{k=0}^m(-1)^k\binom{m}{k}T^{*k}T^{m-k}=0
$$

and T is skew-m-selfadjoint if iT is m-selfadjoint. These operators have been introduced and studied by Helton [?]. Moreover, for $m > 1$, the operator $T \in$ $B(H)$ is said to be strict exponentially m-isometry if it is an exponentially m-isometric operator but not exponentially $(m-1)$ -isometry. Similarly, one can define strict m-isometries and strict m-selfadjoint operators.

In [?, ?] authors investigate the sum of an m -isometric or an m -selfadjoint operator with a nilpotent operator and also the sum or product of two m-isometries or two m-selfadjoint operators. As an application of these results, we show that the sum of two commuting operators A and B that are, respectively, exponentially m-isometry and exponentially n-isometry is exponentially $(m + n - 1)$ -isometry. Also, we prove that if Q is a nilpotent operator of order l, $Q^l = 0$ and $Q^{l-1} \neq 0$, for some positive integer l, and A commutes with Q, then the sum $A + Q$ is an exponentially $(m + 2l -$ 2)-isometric operator. It is known that the class of m-isometric and m selfadjoint operators are stable under the powers [?, ?, ?]. We observe that the class of exponentially m-isometric operators is not stable under powers.

Also, we show that for each compact subset K of the pure imaginary line, there is an exponentially m-isometric operator T on a separable infinite Hilbert space whose spectrum is K . After that, we prove that limit of every sequence of exponentially m-isometric operators with respect to the strong operator topology is also an exponentially m-isometric operator. Furthermore, we show that every exponentially m-isometric diagonal, Toeplitz or multiplication operator is skew- m -selfadjoint. Moreover, we characterize normal, idempotent and weighted shift operators which are exponentially m-isometry.

2. main result

The skew-m-selfadjointness condition, $e^{-sT^*}e^{-sT} = \sum_{n=1}^{m-1}$ $j=0$ $A_j s^j$ for each $s \in$

 $\mathbb R$ and some operators A_j , implies that the class of exponentially m-isometric operators contains all skew-m-selfadjoint operators. The following lemma implies that the class of skew-m-selfadjoint operators is a proper subset of E_m . In the following, $\langle ., . \rangle$ denotes the inner product on H. Moreover, for any vectors x and y in H, $x \otimes y$ denotes the rank one operator defined by

$$
(x \otimes y)(z) = \langle z, y \rangle x.
$$

Lemma 2.1. Let $x, y \in H$. If $\langle x, y \rangle = 1$, then the following statements are equivalent:

(a) $||x|| ||y|| = 1;$ (b) there exists a nonzero real number α such that $y = \alpha x$; (c) $\langle z, y \rangle \langle x, x \rangle$ $y = \langle z, x \rangle \langle y, y \rangle x$, for each $z \in H$; (d) $\langle x, z \rangle \langle z, y \rangle \geq 0$, for each $z \in H$; (e) $x \otimes y$ is selfadjoint.

In the following example note that $x \otimes y$ is a nonzero idempotent if and only if $\langle x, y \rangle = 1$.

Example 2.2. Let H be an infinite-dimensional Hilbert space with an orthonormal basis $\{e_n\}_{n\in\mathbb{N}}$. For two distinct integers l and k greather that one, let $x = e_l$ and $y = e_l + e_k$. Then by Lemma ??, $x \otimes y$ is an idempotent which is not selfadjoint. Moreover, let A be the unilateral weighted shift operator, $Ae_j = w_j e_{j+1}$, with weight $(w_j)_j$ on H such that $w_l = w_{l-1} = w_{k-1} = 0$, $N\!-\!1$ v−1
∏ $i=0$ $w_{i+j} = 0$ for all j and $N = \left[\frac{m+1}{2}\right]$ $\frac{+1}{2}$. Since A and *iA* are unitarily equivalent, Proposition 2.5 of $[?]$ implies that A is a skew-m-selfadjoint operator. Also, it is easily seen that the operator $x \otimes y$ commutes with A. Thus $A + 2\pi ix \otimes y$ is an exponentially *m*-isometric operator that is not skew-m-selfadjoint.

It is known that m-isometric and m-selfadjont operators are stable under powers [?, ?, ?]; meanwhile exponentially m-isometric operators are not. As an example, the operator $(iI)^n$ is exponentially isometry for all odd numbers n but it is not for any even number m . The sum of the commuting exponentially m-isometries as follows.

Theorem 2.3. Let $A, B, Q \in B(H)$ be commuting operators. Suppose that $A \in E_m$, $B \in E_n$ and $Q^l = 0$ for some positive integer l. Then (i) For each $k \in \mathbb{Z}$, $kA \in E_m$.

(ii) $A + B \in E_{m+n-1}$. In particular, for every pure imaginary number μ , $A + \mu I \in E_m$.

(iii) $A + Q \in E_{m+2l-2}$.

Moreover, $A + Q$ is strict exponentially $(m + 2l - 2)$ -isometry if and only if $Q^{*l-1}\beta_{m-1}(e^A)Q^{l-1} \neq 0$. In particular, for the case $m = 1, A + Q$ is strict exponentially $(2l - 1)$ -isometry if and only if Q is nilpotent of order l.

Now, similar description for *m*-isometric operators $[?]$, we will describe exponentially m-isometric operators with prescribed spectrum.

Theorem 2.4. Let H be an infinite dimensional separable Hilbert space and $m > 1$ be an odd number. If K is a non-empty compact subset of pure imaginary axis, then there exists a strict exponentially m-isometric operator $T \in B(H)$ with spectrum K.

Proposition 2.5. Let T be an exponentially m-isometric operator. If one of the following statements holds, then T is skew-selfadjoint.

(i) T is a Toeplitz operator.

(ii) T is a diagonal operator.

(iii) $T = M_{\varphi}$ is the multiplication operator defined by $M_{\varphi} f = \varphi f$ on $L_2(\mu)$, for a σ -finite measure μ and a bounded Borel function φ , or on the Hardy space H^2 for $\varphi \in H^{\infty}$.

Proposition 2.6. Let T be an exponentially m-isometric operator. Then the following statements hold:

(i) If T is a normal operator then it is exponentially isometry.

(ii) If T is bounded below then it is invertible. Consequently, if T is an isometric operator, then it is unitary.

(iii) If T is an idempotent operator then $T = 0$.

Suppose that $(T_n)_{n\geq 1}$ is a sequence of operators in E_m . If T_n converges to T then $T \in E_m$. Now, we consider the following question: If T_n converges to T in the strong operator topology, is $T \in E_m$? We will give positive answer to this question.

Proposition 2.7. If $(T_n)_{n>1}$ is a sequence of operators in E_m that converges to T in the strong operator topology, then $T \in E_m$.

Corollary 2.8. Suppose that $(T_n)_{n\geq 1}$ is a sequence of m-selfadjoint operators such that $T_n \to T$ in the strong operator topology. Then T is also an m-selfadjoint operator.

REFERENCES

- 1. J. Agler, A disconjugacy theorem for Toeplitz operators, Amer. J. Math. 112 (1) (1990) 1-14.
- 2. J. Agler, M. Stankus, m-isometric transformations of Hilbert space. I, Integral Equations Operator Theory. 21(4) (1995)383-429.
- 3. T. Bermúdez, C. Díaz-Mendoza, A. Martinón, Power of m -isometries, Studia. Math. 208 (3) (2012) 1-9.
- 4. T. Bermúdez, A. Martinón, J. A. Noda, An isometry plus a nilpotent operator is an m-isometry. Application. J. Math. Anal. Appl. 407 (2013) 505-512.
- 5. J. W. Helton, Infinite-dimensional Jordan operators and Sturm- Liouville conjugate point theory, Traus. Amer. Math. soc. 170 (1972) 305-331.
- 6. T. Le, Algebraic properties of operator roots of polynomials, J. Math. Anal. Appl. (2014) 1-9.
- 7. M. Salehi, K. Hedayatian, On higher order selfadjoint operators, Linear Algebra Appl. 587 (2020) 358-386.