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Abstract. In this paper we explore conditions under which every weighted
composition-differentiation operator on the Hardy space H1(D) is com-
pletely continuous.

1. Introduction

Let X be a Banach space of analytic functions on the unit disk, and let
ϕ be an analytic self-mapping on the unit disk. The composition operator
Cϕ : X → X is defined by

Cϕ(f) = f ◦ ϕ.
It is well-known that the composition operator is bounded on the Hardy
space Hp and on the Bergman space Ap where p is a positive number. For a
function ψ ∈ X , the weighted composition operator Cψ,ϕ : X → X is defined
by

Cψ,ϕ(f) = ψ · f ◦ ϕ.
Similarly, we can define the composition-differentiation operator Dϕ : X →
X by

Dϕ(f) = f ′ ◦ ϕ.
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In most cases the functional Banach space X equals either the Hardy space
Hp or the Bergman space Ap. According to [4, Corollary 3.2], for a univalent
self-map ϕ of the unit disk, the operator Dϕ on the Hardy space H2 is
bounded if and only if

sup
z∈D

1− |z|
(1− |ϕ(z)|)3

<∞.

Moreover, Dϕ is compact on H2 if and only if

lim
|z|→1

1− |z|
(1− |ϕ(z)|)3

= 0.

Now, let ψ be an analytic function on the unit disk, and define the weighted
composition-differentiation operator Dψ,ϕ : X → X by the following rela-
tion:

Dψ,ϕ(f) = ψ · f ′ ◦ ϕ.
This operator was recently studied in [1] and [3].

An operator T : X → X is said to be completely continuous if xn → x
weakly in X , implies ‖Txn − Tx‖ → 0. It is well-known that on a Banach
space X , every compact operator is completely continuous. On the other
hand, if the Banach space X is reflexive, then completely continuous oper-
ators are compact. In this paper we shall focus on the non-reflexive Hardy
space H1, and try to find conditions under which the weighted composition-
differentiation operator Dψ,ϕ is completely continuous. We shall provide
characterizations for the complete continuity of this operator in terms of ψ
and ϕ. More precisely, we prove that Dψ,ϕ is completely continuous if and

only if ψ = 0 almost everywhere in {eiθ : |ϕ(eiθ)| = 1}.

2. Preliminaries

An analytic function f on the unit disk is said to belong to the Hardy
space Hp = Hp(D) if

‖f‖pHp = sup
0≤r<1

1

2π

∫ 2π

0
|f(reiθ)|pdθ <∞.

For 1 ≤ p <∞, the Hardy space Hp is a Banach space of analytic functions,
and for p = 2 it is a Hilbert space with the following inner product:

〈f, g〉 =
1

2π

∫ 2π

0
f∗(eiθ)g∗(eiθ)dθ,

where
f∗(eiθ) := lim

r→1−
f(reiθ)

is the boundary function of f . It is easy to see that for f ∈ H2 with Taylor
series f(z) =

∑∞
n=0 anz

n, the norm of f is given by

‖f‖2H2 =

∞∑
n=0

|an|2.
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Recall that an operator T : X → X is compact if for every bounded sequence
(xn) in X , the sequence (Txn) has a convergent subsequence. We remark
that for 1 < p < ∞, the Hardy space Hp is reflexive; meaning that it is
isometrically isomorphic with its dual. We know that on reflexive Banach
spaces, an operator T is compact if and only if it is completely continuous.
In this paper, we concentrate on the non-reflexive Banach space H1 and the
composition-differentiation operator Dψ,ϕ on H1. We will find conditions
on the function ϕ to ensure that the operator Dψ,ϕ is completely continuous
on H1.

3. Main Result

In the following theorem we shall characterize the complete continuity of
composition-differentiation operator in terms of ψ and ϕ.

Theorem 3.1. Let ψ ∈ H1 and ϕ be a self-map on D. Assume that Dψ,ϕ

is bounded on H1. Then Dψ,ϕ is completely continuous on H1 if and only

if ψ = 0 almost everywhere in {eiθ : |ϕ(eiθ)| = 1}.

Proof. Let Dψ,ϕ be completely continuous, and let T denote the unit circle.

Assume that f ∈ L∞(T) and let f̂(n) be its n-th Fourier coefficient. By
Riemann-Lebesgue lemma we have∫

T
f(z)zndm = f̂(n)→ 0, n→∞.

This means that {zn} converges to zero weakly in L1(T), and hence weakly
in H1. Since Dψ,ϕ is completely continuous, it follows that

‖Dψ,ϕ(zn)‖H1 → 0, n→∞.

On the other hand, for each n ∈ N,

0 ≤
∫
{eiθ:|ϕ(eiθ)|=1}

|ψ|dm ≤
∫
{eiθ:|ϕ(eiθ)|=1}

n|ψ|dm

=

∫
{eiθ:|ϕ(eiθ)|=1}

n|ψ||ϕ|n−1dm

≤
∫
T
n|ψ||ϕ|n−1dm

= ‖Dψ,ϕ(zn)‖H1 → 0, n→∞.

Therefore the integral on the left-hand side must be zero, from which it
follows that ψ = 0 almost everywhere in {eiθ : |ϕ(eiθ)| = 1}.

Conversely, Let (fn) be a weak null sequence in H1. It follows that
f ′n → 0 uniformly on compact subsets of D. Using this fact together with
the assumption that ψ = 0 almost everywhere in {eiθ : |ϕ(eiθ)| = 1}, we
conclude that

Dψ,ϕ(fn)(eiθ) = ψ(eiθ)f ′n(ϕ(eiθ))→ 0, a.e. inT.
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It now follows that Dψ,ϕ(fn) converges to zero in measure in L1(T) (see
[5, page 74]). Moreover, the boundedness of Dψ,ϕ on H1 implies that
Dψ,ϕ(fn)→ 0 in the weak topology of H1, and hence in the weak topology of
L1(T). Finally, we invoke the fact that weak convergence of a given sequence
together with its convergence in measure implies its norm convergence (see
[2, page 295]), that is, ‖Dψ,ϕ(fn)‖H1 → 0 as n→∞. �
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