

COMPLETE CONTINUITY OF WEIGHTED COMPOSITION-DIFFERENTIATION OPERATORS IN HARDY SPACE

A. BABAEI*, A. ABKAR

Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin 34194, Iran a.babaei@edu.ikiu.ac.ir; abkar@sci.ikiu.ac.ir

ABSTRACT. In this paper we explore conditions under which every weighted composition-differentiation operator on the Hardy space $H^1(\mathbb{D})$ is completely continuous.

1. INTRODUCTION

Let \mathcal{X} be a Banach space of analytic functions on the unit disk, and let φ be an analytic self-mapping on the unit disk. The *composition operator* $C_{\varphi}: \mathcal{X} \to \mathcal{X}$ is defined by

$$C_{\varphi}(f) = f \circ \varphi.$$

It is well-known that the composition operator is bounded on the Hardy space H^p and on the Bergman space A^p where p is a positive number. For a function $\psi \in \mathcal{X}$, the weighted composition operator $C_{\psi,\varphi} : \mathcal{X} \to \mathcal{X}$ is defined by

$$C_{\psi,\varphi}(f) = \psi \cdot f \circ \varphi.$$

Similarly, we can define the composition-differentiation operator $D_{\varphi}: \mathcal{X} \to \mathcal{X}$ by

$$D_{\varphi}(f) = f' \circ \varphi.$$

²⁰²⁰ Mathematics Subject Classification. Primary 47B32; 47B33

Key words and phrases. Hardy space; composition-differentiation operator; completely continuous operator.

^{*} Speaker.

In most cases the functional Banach space \mathcal{X} equals either the Hardy space H^p or the Bergman space A^p . According to [4, Corollary 3.2], for a univalent self-map φ of the unit disk, the operator D_{φ} on the Hardy space H^2 is bounded if and only if

$$\sup_{z\in\mathbb{D}}\frac{1-|z|}{(1-|\varphi(z)|)^3}<\infty.$$

Moreover, D_{φ} is compact on H^2 if and only if

$$\lim_{|z| \to 1} \frac{1 - |z|}{(1 - |\varphi(z)|)^3} = 0.$$

Now, let ψ be an analytic function on the unit disk, and define the *weighted* composition-differentiation operator $D_{\psi,\varphi} : \mathcal{X} \to \mathcal{X}$ by the following relation:

$$D_{\psi,\varphi}(f) = \psi \cdot f' \circ \varphi.$$

This operator was recently studied in [1] and [3].

An operator $T: \mathcal{X} \to \mathcal{X}$ is said to be *completely continuous* if $x_n \to x$ weakly in \mathcal{X} , implies $||Tx_n - Tx|| \to 0$. It is well-known that on a Banach space \mathcal{X} , every compact operator is completely continuous. On the other hand, if the Banach space \mathcal{X} is reflexive, then completely continuous operators are compact. In this paper we shall focus on the non-reflexive Hardy space H^1 , and try to find conditions under which the weighted compositiondifferentiation operator $D_{\psi,\varphi}$ is completely continuous. We shall provide characterizations for the complete continuity of this operator in terms of ψ and φ . More precisely, we prove that $D_{\psi,\varphi}$ is completely continuous if and only if $\psi = 0$ almost everywhere in $\{e^{i\theta} : |\varphi(e^{i\theta})| = 1\}$.

2. Preliminaries

An analytic function f on the unit disk is said to belong to the Hardy space $H^p = H^p(\mathbb{D})$ if

$$||f||_{H^p}^p = \sup_{0 \le r < 1} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta < \infty.$$

For $1 \le p < \infty$, the Hardy space H^p is a Banach space of analytic functions, and for p = 2 it is a Hilbert space with the following inner product:

$$\langle f,g \rangle = \frac{1}{2\pi} \int_0^{2\pi} f^*(e^{i\theta}) \overline{g^*(e^{i\theta})} d\theta,$$

where

$$f^*(e^{i\theta}) := \lim_{r \to 1^-} f(re^{i\theta})$$

is the boundary function of f. It is easy to see that for $f \in H^2$ with Taylor series $f(z) = \sum_{n=0}^{\infty} a_n z^n$, the norm of f is given by

$$||f||_{H^2}^2 = \sum_{n=0}^{\infty} |a_n|^2.$$

INTEGRAL MEANS

Recall that an operator $T: \mathcal{X} \to \mathcal{X}$ is compact if for every bounded sequence (x_n) in \mathcal{X} , the sequence (Tx_n) has a convergent subsequence. We remark that for $1 , the Hardy space <math>H^p$ is reflexive; meaning that it is isometrically isomorphic with its dual. We know that on reflexive Banach spaces, an operator T is compact if and only if it is completely continuous. In this paper, we concentrate on the non-reflexive Banach space H^1 and the composition-differentiation operator $D_{\psi,\varphi}$ on H^1 . We will find conditions on the function φ to ensure that the operator $D_{\psi,\varphi}$ is completely continuous on H^1 .

3. MAIN RESULT

In the following theorem we shall characterize the complete continuity of composition-differentiation operator in terms of ψ and φ .

Theorem 3.1. Let $\psi \in H^1$ and φ be a self-map on \mathbb{D} . Assume that $D_{\psi,\varphi}$ is bounded on H^1 . Then $D_{\psi,\varphi}$ is completely continuous on H^1 if and only if $\psi = 0$ almost everywhere in $\{e^{i\theta} : |\varphi(e^{i\theta})| = 1\}$.

Proof. Let $D_{\psi,\varphi}$ be completely continuous, and let \mathbb{T} denote the unit circle. Assume that $f \in L^{\infty}(\mathbb{T})$ and let $\hat{f}(n)$ be its *n*-th Fourier coefficient. By Riemann-Lebesgue lemma we have

$$\int_{\mathbb{T}} f(z)\overline{z}^n \mathrm{d}m = \hat{f}(n) \to 0, \quad n \to \infty.$$

This means that $\{z^n\}$ converges to zero weakly in $L^1(\mathbb{T})$, and hence weakly in H^1 . Since $D_{\psi,\varphi}$ is completely continuous, it follows that

$$||D_{\psi,\varphi}(z^n)||_{H^1} \to 0, \quad n \to \infty.$$

On the other hand, for each $n \in \mathbb{N}$,

Ì

$$\begin{split} 0 &\leq \int_{\{e^{i\theta}:|\varphi(e^{i\theta})|=1\}} |\psi| \mathrm{d}m \leq \int_{\{e^{i\theta}:|\varphi(e^{i\theta})|=1\}} n|\psi| \mathrm{d}m \\ &= \int_{\{e^{i\theta}:|\varphi(e^{i\theta})|=1\}} n|\psi||\varphi|^{n-1} \mathrm{d}m \\ &\leq \int_{\mathbb{T}} n|\psi||\varphi|^{n-1} \mathrm{d}m \\ &= \|D_{\psi,\varphi}(z^n)\|_{H^1} \to 0, \quad n \to \infty. \end{split}$$

Therefore the integral on the left-hand side must be zero, from which it follows that $\psi = 0$ almost everywhere in $\{e^{i\theta} : |\varphi(e^{i\theta})| = 1\}$.

Conversely, Let (f_n) be a weak null sequence in H^1 . It follows that $f'_n \to 0$ uniformly on compact subsets of \mathbb{D} . Using this fact together with the assumption that $\psi = 0$ almost everywhere in $\{e^{i\theta} : |\varphi(e^{i\theta})| = 1\}$, we conclude that

$$D_{\psi,\varphi}(f_n)(e^{i\theta}) = \psi(e^{i\theta})f'_n(\varphi(e^{i\theta})) \to 0, \quad a.e. \text{ in } \mathbb{T}.$$

ABKAR, BABAEI*

It now follows that $D_{\psi,\varphi}(f_n)$ converges to zero in measure in $L^1(\mathbb{T})$ (see [5, page 74]). Moreover, the boundedness of $D_{\psi,\varphi}$ on H^1 implies that $D_{\psi,\varphi}(f_n) \to 0$ in the weak topology of H^1 , and hence in the weak topology of $L^1(\mathbb{T})$. Finally, we invoke the fact that weak convergence of a given sequence together with its convergence in measure implies its norm convergence (see [2, page 295]), that is, $\|D_{\psi,\varphi}(f_n)\|_{H^1} \to 0$ as $n \to \infty$.

References

- A. Babaei, A. Abkar, Weighted composition-differentiation operators on the Hardy and Bergman spaces, Bull. Iran. Math. Soc. 48 (6) (2022) 3637–3658.
- N. Dunford, J.T. Schwartz, *Linear Operators, Part I*, Wiley Interscience, New York, 1958.
- M. Fatehi, C.N.B. Hammond, Composition-differentiation operator on the Hardy space, Proc. Am. Math. Soc. 148 (2020), no. 7, 2893–2900
- S. Ohno, Products of composition and differentiation between Hardy spaces, Bull. Austr. Math. Soc. 73 (2006), no. 2, 235–243
- 5. W. Rudin, Real and Complex Analysis, 3rd edition, McGraw-Hill, 1986