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Abstract. In this paper we investigate conditions on the symbol func-
tion to guarantee that the composition operator from the Bergman space
of the polydisk to the Bergman space of the unit disk is bounded.

1. introduction

Let D denote the open unit disk in the complex plane. For α > −1, the
weighted Bergman space A2

α(D) is the space of analytic functions f in D for
which ∫

D
|f(z)|2 dAα(z) < +∞,

where

dAα(z) = π−1(α+ 1)(1− |z|2)αdx dy

is the weighted area measure in the unit disk. It is well-known that A2
α(D)

equipped with the inner product

〈f, g〉 = (α+ 1)

∫
D
f(z)g(z)(1− |z|2)αdA(z),
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is a Hilbert space with the following reproducing kernel (see [4])

Kw(z) =
1

(1− zw)α+2
.

We mean by polydisk the subset Dn = D × · · · × D of the n-dimensional
complex space. Now let Hol(Dn) denote the space of holomorphic functions
on Dn. The weighted Bergman space on the polydisk Dn is defined by

A2
α(Dn) = Hol(Dn) ∩ L2(Dn, dVα)

where

dVα(z) = dAα(z1) · · · dAα(zn),

and

dAα(zk) = π−1(α+ 1)(1− |zk|2)αdxkdyk, 1 ≤ k ≤ n.

This means that a function f(z1, ..., zn) in Hol(Dn) belongs to A2
α(Dn) if

‖f‖2A2
α(Dn) =

∫
Dn
|f(z1, ..., zn)|2dAα(z1) · · · dAα(zn) < +∞.

The reproducing kernel of A2
α(Dn) is given by (see the papers [5] and [6])

Kz(w) =
n∏
j=1

1

(1− zjwj)α+2
= Kz1(w1) · · ·Kzn(wn).

Let Φ : Dm → Dn be a holomorphic mapping (m,n are positive integers):

Φ(z) =
(
ϕ1(z), . . . , ϕn(z)

)
, z = (z1, . . . , zm) ∈ Dm.

Consider the composition operator

CΦ : A2
α(Dn)→ A2

β(Dm),

defined by CΦ(f) = f ◦Φ. Moreover, if ψ : Dn → C is holomorphic, then the
weighted composition operator Cψ,Φ is defined by

Cψ,Φ(f) = ψ · f ◦ Φ, f ∈ A2
α(Dn).

In this paper, we shall focus on the composition operator

CΦ : A2
α(D2)→ A2

α(D).

This problem can then be studied for CΦ : A2
α(Dk) → A2

α(D), and our
choice k = 2 is for simplicity. We shall prove that if ϕ and ψ are analytic
self mappings of the unit disk, and Φ = (ϕ,ψ) : D → D2 is a holomorphic
function such that ‖ϕψ‖∞ < 1, then CΦ : A2

α(D2)→ A2
α(D) is bounded. We

should mention that this problem for the Hardy space is already known; see
[3]. For recent work on this topic see the papers [1] and [2].
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2. Preliminaries

Let F (z, w) ∈ A2
α(D2). Note that

CΦF (z) = F (ϕ(z), ψ(z)).

Let

F (z, w) =

∞∑
n=0

znFn(w) =

∞∑
n=0

wnGn(z).

Since for m 6= n we have∫
D2

znzmFn(w)Fm(w)dAα(z)dAα(w) = 0,

it follows that

‖F‖2A2
α(D2) =

∞∑
n=0

‖zn‖2A2
α(D)‖Fn‖

2
A2
α(D)

=
∞∑
n=0

n! Γ(α+ 2)

Γ(α+ n+ 2)
‖Fn‖2A2

α(D).

Similarly, we see that

‖F‖2A2
α(D2) =

∞∑
n=0

n! Γ(α+ 2)

Γ(α+ n+ 2)
‖Gn‖2A2

α(D).

Now let σ be a number satisfying

‖ϕψ‖∞ = sup
z∈D
|ϕ(z)ψ(z)| < σ < 1.

Then we can find measurable disjoint subsets Ω1 and Ω2 in the unit disk
such that

∫
Ω1∪Ω2

dAα(z) = 1, and |ϕ(z)| <
√
σ, a.e. in Ω1, and |ψ(z)| <

√
σ,

a.e. in Ω2. To see this we define

Ω1 = {z : |ϕ(z)| <
√
σ, a.e.},

and

Ω2 = {z : |ϕ(z)| ≥
√
σ, a.e.}.

Clearly if z /∈ Ω1, then z ∈ Ω2 and |ϕ(z)| ≥
√
σ. Hence we must have

|ψ(z)| <
√
σ since otherwise we have |ϕ(z)ψ(z)| ≥ σ which is not possible.

This argument will be used in the proof of the main result.

3. Main result

We begin by proving that if Φ = (ϕ,ψ) is a holomorphic mapping from
the unit disk to D2, then the composition operator CΦ : A2

α(D2) → A2
α(D)

is bounded.

Theorem 3.1. Let Φ = (ϕ,ψ) where ϕ and ψ are analytic self-mappings
of the unit disk satisfying ‖ϕψ‖∞ < 1. Then CΦ : A2

α(D2) → A2
α(D) is

bounded.
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Sketch of proof. It is clear that

‖CΦF‖2A2
α(D) =

∫
Ω1

|CΦF |2 +

∫
Ω2

|CΦF |2.

Then we approximate ∫
Ω1

|CΦF |2

by σ, norm of Cψ and norm of F in the Bergman space A2
α(D2). Similarly,

one approximates ∫
Ω2

|CΦF |2

by σ, norm of Cϕ, and norm of F in the Bergman space A2
α(D2). Finally,

‖CΦF‖2A2
α(D) ≤ Cσ

(
‖Cϕ‖2 + ‖Cψ‖2

)
‖F‖A2

α(D2).
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