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Abstract. In this paper we study the truncated Wallis product, by
showing that for each fixed integer m ⩾ 1, there exists computable
constants C′

1, . . . , C
′
m, such that as n → ∞,

n∏
k=1

2k · 2k
(2k − 1)(2k + 1)

=

(
1 +

m∑
k=1

C′
k

nk

)
π

2
+O

(
1

nm+1

)
.

1. Introduction

The Wallis product for π obtained in 1655 by John Wallis and appeared
one year later in his Arithmetica Infinitorum [13, p. 179] in the following
form

4

π
=

3× 3× 5× 5× 7× 7× 9× 9× 11× 11× 13× 13× · · ·
2× 4× 4× 6× 6× 8× 8× 10× 10× 12× 12× 14× · · ·

.

See [9], [10, Chap. 3] and [11] for a detailed description of Wallis’ work. In
modern terminology and notation, the Wallis product for π reads as follows

π

2
=

∞∏
k=1

2k · 2k
(2k − 1)(2k + 1)

. (1.1)
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Several researchers have established interesting properties of (1.1), including
new proofs, generalizations, inequalities and connection with the probability
theory. See [1, 4, 5, 8, 12, 14] and the references given there.

Standard proofs of the Wallis product for π runs over the integration
of the powers of sine or cosine functions (see for example [6, Sec. 9.18]).
Letting for each positive integer n,

In :=

∫ π
2

0
sinn x dx,

integration by parts gives In = n−1
n In−2. Repeated using this recurrence

relation, we deduce that

I2n =
π

2

n∏
k=1

2k − 1

2k
, and I2n+1 =

n∏
k=1

2k

2k + 1
.

Dividing I2n+1 by I2n we get π
2 = Wnηn, where Wn is the truncated Wallis

product given by

Wn =

n∏
k=1

2k · 2k
(2k − 1)(2k + 1)

, (1.2)

and
ηn =

I2n
I2n+1

. (1.3)

Since 0 ⩽ sinx ⩽ 1 for 0 ⩽ x ⩽ π
2 , we observe that the sequence (In)n⩾1

is strictly decreasing, and consequently 1 ⩽ ηn ⩽ 1 + 1
2n . Thus, ηn → 1 as

n → ∞. Equivalently, Wn → π
2 as n → ∞, implying (1.1).

In this note we are motivated by studying the truncated form of the Wallis
product. Considering the notion of asymptotic series [3, Sec. 1.5] due to
Poincaré, we obtain an asymptotic series for the factor ηn, as follows.

Theorem 1.1. Let m ⩾ 1 be fixed integer. There exists computable con-
stants C1, . . . , Cm such that as n → ∞,

ηn = 1 +
m∑
k=1

Ck

nk
+O

(
1

nm+1

)
. (1.4)

Therefore, we have

π

2
=

(
1 +

m∑
k=1

Ck

nk

)
Wn +O

(
1

nm+1

)
. (1.5)

Remark 1.2. The value of the coefficients Ck are given by

Ck =
k∑

j=0

Gj

(
3

2
, 1

)
Gk−j

(
1

2
, 1

)
, (1.6)
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where
Gk(a, b) =

(
a− b

k

)
B

(a−b+1)
k (a), (1.7)

with B
(ℓ)
n (x) denoting the generalized Bernoulli polynomials, defined for

integers ℓ ⩾ 0 by(
t

et − 1

)ℓ

ext =
∞∑
n=0

B
(ℓ)
n (x)

n!
tn, |t| < 2π.

By computation, we have

ηn = P

(
1

n

)
+O

(
1

n11

)
,

where

P (t) = 1 +
1

4
t− 3

32
t2 +

3

128
t3 +

3

2048
t4 − 33

8192
t5 − 39

65536
t6

+
699

262144
t7 +

4323

8388608
t8 − 120453

33554432
t9 − 208749

268435456
t10.

Corollary 1.3. Let m ⩾ 1 be fixed integer, Wn defined by (1.2), and the
constants C ′

1, . . . , C
′
m defined by the recurrence

k∑
j=0

CjC
′
k−j = 0, (1.8)

with the initial values C0 = C ′
0 = 1 and C1, . . . , Cm given in (1.6). Then,

as n → ∞ we have

Wn =

(
1 +

m∑
k=1

C ′
k

nk

)
π

2
+O

(
1

nm+1

)
.

Remark 1.4. By computation, we have

Wn = Q

(
1

n

)
π

2
+O

(
1

n11

)
,

where

Q(t) = 1− 1

4
t+

5

32
t2 − 11

128
t3 +

83

2048
t4 − 143

8192
t5 +

625

65536
t6

− 1843

262144
t7 +

24323

8388608
t8 +

61477

33554432
t9 − 14165

268435456
t10.

2. Proofs

Proof of Theorem 1.1. The idea to obtain an asymptotic series for the factor
ηn is relating it by the Euler gamma function [7, Eq. 5.2.1], which is defined
for ℜ(z) > 0 by

Γ(z) =

∫ ∞

0
e−ttz−1dt,
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and by analytic continuation for ℜ(z) ⩽ 0 with simple poles of residue (−1)n

n!
at z = −n, with n ∈ N. To make this connection, we use the notion of the
Beta function B(a, b) [7, Eq. 5.12.1], which is defined for complex variables
a and b with ℜ(a) > 0 and ℜ(b) > 0 as follows

B(a, b) =

∫ 1

0
ta−1 (1− t)b−1 dt =

Γ(a)Γ(b)

Γ(a+ b)
. (2.1)

The following trigonometric integral representation [7, Eqs. 5.12.2] holds
the Beta function ∫ π

2

0
sin2a−1 x cos2b−1 x dx =

1

2
B(a, b).

Here we let a = z+1
2 with ℜ(z) > −1, and b = 1

2 . By using (2.1) we deduce
that ∫ π

2

0
sinz x dx =

Γ(12)

2

Γ
(
z+1
2

)
Γ
(
z
2 + 1

) .
We recall that the Wallis product (1.1) and Γ(12) =

√
π [7, Eq. 5.4.6] are

the same [2]. Hence, for each complex number z with ℜ(z) > −1, we get∫ π
2

0
sinz x dx =

√
π

2

Γ
(
z+1
2

)
Γ
(
z
2 + 1

) .
By using this identity, and recalling (1.3), we obtain the following Γ-representation
for ηn,

ηn =
Γ
(
n+ 3

2

)
Γ
(
n+ 1

2

)
Γ(n+ 1)2

.

Asymptotic expansion for the ratio of two gamma functions [7, Eqs. 5.11.13,
5.11.17, 24.16.1] asserts that for any complex constants a and b, if z → ∞
in the sector | arg(z)| ⩽ π − δ < π, then

Γ(z + a)

Γ(z + b)
∼ za−b

∞∑
k=0

Gk(a, b)

zk
,

where Gk(a, b) is defined in (1.7). Considering the notion of asymptotic
series [3, Sec. 1.5], due to Poincaré, we may read the above asymptotic, for
any fixed integer m ⩾ 1, as the following truncated form

Γ(z + a)

Γ(z + b)
= za−b

(
m∑
k=0

Gk(a, b)

zk
+O

(
1

|z|m+1

))
. (2.2)

By using (2.2) we obtain

Γ
(
n+ 3

2

)
Γ(n+ 1)

= n
1
2

(
m∑
k=0

Gk(
3
2 , 1)

zk
+O

(
1

nm+1

))
,
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and
Γ
(
n+ 1

2

)
Γ(n+ 1)

= n− 1
2

(
m∑
k=0

Gk(
1
2 , 1)

zk
+O

(
1

nm+1

))
.

Note that G0(a, b) = 1 [7, Eqs. 5.11.15]. Thus, multiplying the above
expansions gives (1.4) with Ck as in (1.6). This completes the proof. □
Proof of Corollary 1.3. By using the relation (1.5) we deduce that

Wn =

(
1 +

m∑
k=1

Ck

nk

)−1(
π

2
+O

(
1

nm+1

))

=

(
1 +

m∑
k=1

Ck

nk

)−1
π

2
+O

(
1

nm+1

)
.

We consider the Taylor expansion of the function t 7→ (1 + t)−1 as t → 0,
and we let t =

∑m
k=1

Ck

nk , where as assumed n → ∞. Thus, there exists the
constants C ′

1, . . . , C
′
m such that(

1 +
m∑
k=1

Ck

nk

)−1

= 1 +
m∑
k=1

C ′
k

nk
+O

(
1

nm+1

)
,

or equivalently(
1 +

m∑
k=1

Ck

nk

)(
1 +

m∑
k=1

C ′
k

nk

)
= 1 +O

(
1

nm+1

)
.

Comparing the coefficients of the both sides, we observe that the recurrence
(1.8) holds for each k with 1 ⩽ k ⩽ m. This completes the proof. □
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