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Abstract. In this paper we investigate the notions of P−convex and
strongly P−convex functions defined on convex subsets of unit semi-
sphere R3. Some versions of Hermite-Hadamard inequality are given in
this setting.

1. Introduction

The Hermite-Hadamard inequality for a convex function f : I → R,

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(x)dx ≤ f(a) + f(b)

2
. (1.1)

I ⊂ R, has received renewed attention by many authors [3]. Many particular
cases in several variables have been investigated by S.S. Dragomir in [5, 6].
Some improvements of 1.1 are studied in [4, 8]. The study of convex set and
functions in semisphere, has several more accurate results and applications
(see [9, 10]). Let us recall some of notions and results from differential
geometry often used in what follows, see [1, 7] and references therein. A
subset S of the unit sphere S2 := {(x1, x2, x3) ∈ R3|x21+x22+x23 = 1}, called
convex if any two points x, y ∈ S can be joined by a unique minimizing
geodesic whose image belongs to S. Let S be a nonempty convex subset of
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S2. A function f : S → R is said to be quasiconvex if for every x, y ∈ S and
every t ∈ [0, 1],

f(γ(t)) ≤ max{f(x), f(y)}, (1.2)
where γ : [0, 1] → S is the unique minimal geodesic in S with γ(0) = x and
γ(1) = y.

For every p, q ∈ S2 with ω := arccos〈p, q〉 = d(p, q) < π( d is called
the intrinsic distance or Riemannian distance on S2), the unique minimal
geodesic in S2 joining p and q is given by the following formula

γ(t) =
sin((1− t)ω)

sinω
p+

sin(tω)

sinω
q, t ∈ [0, 1]. (1.3)

Let M ⊆ R3 be a 2-surface and f : M → R be an integrable function. If
F : D → M is a C1 parametrization of M , where D is an open subset of R2

in uv−plane then, the surface integral of f on R := F (D) ⊆ M is defined
by ∫

R
fds :=

∫ ∫
D
f(F (u, v))‖∂F

∂u
× ∂F

∂v
‖dudv.

Note that, the surface integral does not depend on parametrization. Recall
the following result from [2].

Lemma 1.1. Let 0 < ω0 < π. Then, for every 0 ≤ θ < 2π the curve
αθ(φ) := (sinφ cos θ, sinφ sin θ, cosφ), φ ∈ [0, ω0],

is the unique minimal geodesic from p̃ := (0, 0, 1) to
q := (sinω0 cos θ, sinω0 sin θ, cosω0).

The Hermite-Hadamard inequality for a convex function on semisphere
is investigated in [2]. Our goal in this paper is to establish an analogue
of the Hermite-Hadamard inequality for P−convex and strongly P−convex
functions defined on semisphere of S2.

2. P−convexity and Hermite-Hadamard inequality

In this section the Hermite-Hadamard inequality for P−convex and strongly
convex functions on hemispheres is considered.

Definition 2.1. Let S be a nonempty convex subset of S2 and f : S → R+

be a real valued function, R+ := [0,+∞]. Then,
(i) f is said to be P−convex (or belong to the class P (I)) if it is nonnegative
and for every x, y ∈ S and every t ∈ [0, 1],

f(γ(t)) ≤ f(x) + f(y), (2.1)
(ii) f is said to be strongly P−convex if it is nonnegative and there exists a
constant c > 0 such that for every x, y ∈ S and every t ∈ (0, 1),

f(γ(t)) ≤ f(x) + f(y)− ct(1− t)d2(x, y), (2.2)
where γ : [0, 1] → S is the unique minimal geodesic in S with γ(0) = x and
γ(1) = y.
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It is easy to see that P (I) contain all non-negative convex and quasiconvex
functions defined on proper convex subsets of sphere are P−convex. In the
following example we introduce a P−convex function defined on a convex
subset of S2 which is not quasiconvex.
Example 2.2. Define the non-negative function f : C → R as

f(x) := 2φ2
0 − d2(x, p̃),

where C := B(p̄, φ0), 0 < φ0 < π/2. Then, f is not a quasiconvex on C.

Now we are in a position to establish the Hermite-Hadamard inequality
for P−convex functions defined on the semispheres of S2.

Theorem 2.3. Let that f : C → R be a P−convex integrable function.
Then, the following inequalitiy holds

f(p̃) ≤ 2

area(C)

∫
C
fds ≤ 2f(p̃) +

1

π sinφ0

∫
∂C

f(σ(τ))dτ, (2.3)

where σ is the parametrization of ∂C by arc length and C := B(p̄, φ0).

Next result is an improvement of lemma 2.2 in[2] for strongly P−convex
functions.
Theorem 2.4. Let S be a convex subset of S2 and q ∈ S2. Suppose that
f : S → R is a real valued function. Then, f is strongly P−convex on S with
constant λ > 0 if and only if for every x ∈ S the function z 7→ f(z)−λd2(z, x)
is P−convex on S.

The following establish a version of Hermite-Hadamard inequality for
strongly P−convex functions.
Theorem 2.5. Let that f : C → R be a strongly P−convex integrable
function with constant λ > 0. Then, the following inequalitiy holds

g(p̃) ≤ 2

area(C)

∫
C
gds ≤ 2g(p̃) +

1

π sinφ0

∫
∂C

g(σ(τ))dτ, (2.4)

where σ is the parametrization of ∂C by arc length, g(z) := f(z)−λd2(z, x)
and C := B(p̄, φ0)..
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