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Abstract. In this paper, one of the most famous NP-complete prob-
lems in graph theory, the total dominating set problem, was investigated
and a new quadratic integer programming model was presented. Finally,
an SDP relaxation models are proposed. Finding the efficiency of the
relaxation could be a future research direction.

1. Introduction

Consider an undirected and connected graph G = (V,E), where V =
{v1, . . . , vn} and E are respectively vertices and edges of G. The degree of
vertex vi is shown by deg(vi) , and ∆ stands for the maximum degree of
the graph. A set S ⊆ V is called dominating set of G if each vertex is a
member of S or adjacent to a member of S. The set S is referred to as
minimum dominating set if it has minimum cardinality among all dominat-
ing sets. The cardinality of minimum dominating set is called domination
number and denoted by γ(G). Domination number and its variations have
been extensively studied in the literature. One of them is total domination
number. A set St of vertices in a graph G is called a total dominating set
if every vertex vi ∈ V is adjacent to an element of st. The size of total
dominating set with minimum cardinality is denoted by γt(G). For more
details we refer the reader to [9].
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Dominating set and its variants are one of the classical problems in graph
theory having important applications in many fields (e.g. [3, 4] for some
recent applications). In [8], more than 1200 papers on different versions
of dominating set problem are listed. Despite having a lot of application
and theoretical attraction, Unfortunately, in [5] it has been shown the NP-
completeness of dominaing set problem and subsequently the total dominat-
ing set problem. So, for any arbitary graph , it is not expected that the total
dominating set will be found in reasonable time. To overcome to this chal-
lenge, there are several methods such linear relaxation, Greedy Algorithms
and metaheuristics. In this paper, the semidefinite relaxation is applied to
find an approximation solution for the total dominating set problem.
The semidefinite programming is a special case of convex optimization which
linear objective function is optimized over the intersection of the cone of pos-
itive semidefinite matrices with linear constraints. Let Sn denote the set of
symmetric n×n real matrices. The cone of symmetric positive semidefinite
(definite) matrices is denoted by Sn+ (Sn++ ). B−D ⪰ 0 ( B−D ≻ 0 ) means
that (B − D) is positive semidefinite (definite). Suppose that A1, . . . , Am

are linearly independent matrices in Sn; C ∈ Sn and b ∈ Rm. The standard
form of semidefinite programming problem is written as follows:

min ⟨C,X⟩
s.t. ⟨Ai, X⟩ ≥ bi i = 1, 2, . . . , n

X ⪰ 0

where ⟨B,D⟩ = tr(BtD) =
∑

i,j bijdij . The semidefinite programming
model can be solved in a polynomial time with an interior point method [1].
The interested reader is referred to [2] for a thorough discussion and appli-
cations of semidefinite programming. semidefinite programming relaxation
is a powerful tool to approximate the optimal solution of some combinato-
rial problems. For example, dominating set [6] and maximum cut [7]. The
good performance of semidefinite relaxation in these problems encouraged
us to utilize this method to find an approximation of the k-tuple domination
number.

2. Problem Description

The open neighborhood of a vertex v consists of the set of adjacent vertices
to v, that is, N(v) = {w ∈ V |wv ∈ E} and the closed neighborhood of is
defined as N [v] = N(v) ∪ {v}. The following labelling can be defined on V
with respect to a subset S ⊆ V as:

y(vi) =

{
1 v ∈ S
−1 v /∈ V

For the sake of simplicity, we denote y(vi) by yi and refer to a vertex with
the label 1 as (+1)-vertex and as (-1)-vertex, otherwise. Further, N(i)(N [i])
stands for the open (closed) neighborhood of the vertex vi. It is important
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to mention that a vertex in a total dominating set St is a (+1)-vertex in-
duced by St. From the definition of labelling, it is clear that the objective
function is 1

2

∑n
i=1(1 + yi). The next lemma gives us valid inequlities for

total dominating set.

Lemma 2.1. St ⊆ V is total dominating set if and only if it must satisfy
in the following inequalities:

∑
j∈N(i)

(1− yiyj) +
∑

j∈N [i]

1 + yj
2

≥ 2 i = 1, 2, . . . , n. (2.1)

Now, based on the (2.1), the quadratic integer programming model can be
written as follows:

min 1
2

∑n
i=1(1 + yi)

s.t.
∑

j∈N(i)(1− yiyj) +
∑

j∈N [i]
1+yj
2 ≥ 2 i = 1, 2, . . . , n

yi ∈ {−1,+1} i = 1, 2, . . . , n

(2.2)

Observe that the objective functions of (2.2) and part of inequalities are
linear, while analyzing of our algorithms needs a quadratic objective func-
tion. To convert these linear functions to quadratic ones, a reference variable
y0 ∈ {−1,+1} is introduced and problem (2.2) is rephrased as follows:

min 1
2

∑n
i=1(1 + y0yi)

s.t.
∑

j∈N(i)(y
2
0 − yiyj) +

∑
j∈N [i]

y20+y0yj
2 ≥ 2 i = 1, 2, . . . , n

yi ∈ {−1,+1} i = 0, 1, 2, . . . , n

(2.3)

Now suppose y = (y0, y1, . . . yn) be the optimal solution of (2.3). If y0 = +1
then y = (y1, . . . yn) is the optimal solution of (2.2) and if y0 = −1 then
y = (−y1, . . .− yn) is the optimal solution of (2.2).

3. Semidefinite Relaxation

First, for i = 0, 1, . . . , n, the variable yi is substituted by an (n + 1)-
dimensional vector ui ∈ U where U = {(+1, 0, . . . , 0), (−1, 0, . . . , 0)}. Ac-
cordingly, the restriction yi ∈ {−1,+1} is replaced by ui ∈ U and then
problem (2.3) is adapted as:
min 1

2

∑n
i=1(1 + ut0ui)

s.t.
∑

j∈N(i)(u
t
0u0 − utiuj) +

∑
j∈N [i]

ut
0u0+ut

0uj

2 ≥ 2 i = 1, 2, . . . , n

uiU i = 0, 1, 2, . . . , n

(3.1)

Recall that ||ui = 1|| for ui ∈ U and this motivates to expand U to the
standard (n + 1)-dimensional unit sphere Sn+1 = {u ∈ Rn+1| ||u|| = 1}, at
the second step of the relaxation procedure. Thus, the following problem is
obtained
min 1

2

∑n
i=1(1 + ut0ui)

s.t.
∑

j∈N(i)(u
t
0u0 − utiuj) +

∑
j∈N [i]

ut
0u0+ut

0uj

2 ≥ 2 i = 1, 2, . . . , n

utiui = 1, ui ∈ Sn+1 i = 0, 1, 2, . . . , n

(3.2)
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By introducing Xij = yiyj , Eij = eie
t
j and Ai =

∑
j∈N(i)

1
2(2E00 − Eij −

Eji) +
∑

j∈N [i]
1
4(2E00 − E0j − Ej0), where ei is the i-th standard unit

vector of Rn+1, the model (3.2) is converted to the following:

min
n

2
+ ⟨C,X⟩

s.t. ⟨Ai, X⟩ ≥ 2 i = 1, 2, . . . , n
Xii = 1 i = 0, 1, 2, . . . , n
rank(X) = 1
X ⪰ 0

(3.3)

where C = (cij), ci0 = c0i =
1
4 for i = 1, . . . , n and cij = 0 otherwise. By

dropping the nonconvex constraint rank(X) = 1 from (3.3), the semidefinite
relaxation is formulated as:

min
n

2
+ ⟨C,X⟩

s.t. ⟨Ai, X⟩ ≥ 2 i = 1, 2, . . . , n
Xii = 1 i = 0, 1, 2, . . . , n
X ⪰ 0

(3.4)

The model (3.4) can be solved by interior point methods in CVX solver.
Finally, the optimal solution of (3.4) just gives us a lower bound to total
domination number.
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