
MAXIMUM WEIGHTED INDEPENDENT SET WITH
UNCERTAIN WEIGHTS

MEHDI DJAHANGIRI∗

Department of Mathematics, Faculty of Basic Science University of Maragheh,
Maragheh, Iran

djahangiri.mehdi@maragheh.ac.ir

Abstract. The uncertainty theory from the viewpoint of Liu is a new
way to deal with problems which some of parameters are not deter-
minate. Especially, this theory is based on experts belifes and by in-
troducing a measure in these belifes tries to overcome to uncertainty.
Maximum weighted independent set problem is a classic combinatorial
optimization problem and has wide range of application such as schedul-
ing. It is proved that this is an NP-hrad problem and for arbitary graph,
there are only approximate algorithms. In this paper, we investigate this
problem with indeterministic weights and obtain an equivalant deminis-
tic integer programming model. Considering the concept of uncertainty
distribution of an uncertain variable, one models is constructed based
on α-chance method.

1. Introduction

When a real-world problem is modeled, the data are usualy considered in-
determinate. In these situations, probability theory, fuzzy theory and theory
of belief functions, also referred to as evidence theory or were introduced but
unfortunatelly, these theories are not cover all problems. Recently, Baoding
Liu proposed an axiomatic basis of uncertainty theory in 2007 [4] and refined
it [5] in 2010. In this theory, the belifes of experts have essential role. In this
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paper, First, an integer programming model is presented for the maximum
weighted independent set problem and a summary of uncertainty theory is
explained and one model is discussed to solve this problem when the weights
are uncertain.

2. An Integer Programming Model

max
∑

i∈V wixi
s.t. xi + xj ≤ 1 ∀(i, j) ∈ E,

xi ∈ {0, 1}.
(2.1)

As already mentioned previously, the problem (2.1) is an NP-hard and no
algorithm can find a solution in polynomial time unless P=NP. For obtaining
an approximate solution of this model, semidefinite or linear relaxation is
utilized. In the next section, a summary of the of uncertainty theory will be
expressed from the viewpoint of Liu.

3. Uncertainty Theory

As already mentioned, uncertainty theory can be a potential tool for
expressing experts’ beliefs in mathematical language and using them. In
this section, we point out some important concepts and features of this
theory. For more details, refer the reader to [5].

Let Γ be a nonempty set and L be a σ-algebra over it . Then (Γ,L)
is called measurable space and each member Λ ∈ L is called a measurable
set or an event. Measurable space (Γ,L) with uncertain measure M (this
concept will be introduced later) is saied uncertainty space and is shown by
(Γ,L,M). A set function M over L is said to be an uncertain measure if it
satisfies the following four axioms:

Axiom1 : (Normality) M{Γ}=1 for the universal set Γ.
Axiom2 : (Duality) M{Λ}+M{Λc}=1 for any event Λ.
Axiom3 : (Subadditivity) For every countable sequence of events Λ1,Λ2, . . .

M
{ ∞∪

i=1

Λi

}
≤

∞∑
i=1

M{Λi}.

Axiom4 : (Product) Let (Γk,Lk,Mk) be uncertainty spaces for integer k ≥ 1.
The product uncertain measure M is the one satisfying

M
{ ∞∏

k=1

Λk

}
=

∞∧
k=1

Mk{Λk},

where Λk are arbitrarily chosen events from Lk for k = 1, 2, . . . re-
spectively and

∧
stands for the minimum operator.
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The function f : (Γ,L,M) → R is said to be measurable if for any
Borel set B of real numbers, it holds f−1(B) = {γ|f(γ) ∈ B} ∈ L. An
uncertain variable ξ is a measurable function on an uncertainty space. Also,
ξ is considered nonegative if M{ξ < 0} = 0 and positive if M{ξ ≤ 0} =
0. The next theorem talks about a fundamental and practical property in
uncertainty theory.

Theorem 3.1. [5] Let ξ1, ξ2, . . . , ξn be uncertain variables. Further, let f
be a real valued measurable function. Then f(ξ1, ξ2, . . . , ξn) is an uncertain
variable.

For an uncertain variable ξ, uncertainty distribution Φ is defined as Φ(x) =
M{ξ ≤ x}. Different type of uncertain variables have been defined in the
literature corresponding to different uncertainty distributions.

Definition 3.2. The uncertain variables ξ1, ξ2, . . . , ξn are said to be inde-
pendent if

M
{ n∩

i=1

(ξi ∈ Bi)

}
=

n∧
i=1

M{ξi ∈ Bi},

for any Borel sets B1, B2, . . . , Bn.

Theorem 3.3. [5] Let ξ1, ξ2, . . . , ξn be independent uncertain variables with
regular uncertainty distributions Φ1,Φ2, . . . ,Φn, respectively. If f is a strictly
increasing function, then the uncertain variable ξ = f(ξ1, ξ2, . . . , ξn) has the
inverse uncertainty distribution

Φ−1(α) = f(Φ−1
1 (α),Φ−1

2 (α), . . . ,Φ−1
n (α)).

In some cases, validity of an equality is not determined and α-chance
model can be a useful interpretation for such situations. It is said that
an equality g(x, ξ) ≤ 0 holds with the belief degree α when M{g(x, ξ) ≤
0} ≥ α. Determining the feasible region associated to such constraints in
higher dimensional spaces is not straightforward. Next theorem presents an
equivalent crisp constraint in specific circumstances.

Theorem 3.4. [5] Let g(x, ξ1, ξ2, . . . , ξn) be a strictly increasing function
with respect to ξ1, . . . , ξk, and strictly decreasing with respect to ξk+1, . . . , ξn.
Further, let ξ1, . . . , ξn be independent uncertain variables with uncertainty
distributions Φ1, . . . ,Φn, respectively. Then the relation M{g(x, ξ1, ξ2, . . . , ξn) ≤
0} ≥ α holds if and only if

g(x,Φ−1
1 (α), . . . ,Φ−1

k (α),Φ−1
k+1(1− α), . . . ,Φ−1

n (1− α)) ≤ 0.

In this section, the model (2.1) is investigated when it’s wheights are
uncertain variables ξi.

max
∑

i∈V ξixi
s.t. xi + xj ≤ 1 ∀(i, j) ∈ E,

xi ∈ {0, 1}.
=⇒

max t
s.t. t ≤

∑
i∈V ξixi

xi + xj ≤ 1 ∀(i, j) ∈ E,
xi ∈ {0, 1}.

(3.1)
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max t
s.t. M{t ≤

∑
i∈V ξixi} ≥ α

xi + xj ≤ 1 ∀(i, j) ∈ E,
xi ∈ {0, 1}.

=⇒

max t
s.t. t ≤

∑
i∈V Φ−1

i (α)xi
xi + xj ≤ 1 ∀(i, j) ∈ E,
xi ∈ {0, 1}.

(3.2)

Finaly, by using theorem 3.3, the following deterministic model, is achieved.
max

∑
i∈V Φ−1

i (α)xi
s.t. xi + xj ≤ 1 ∀(i, j) ∈ E,

xi ∈ {0, 1}.
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