

SOME RESULTS IN REORDERED WOVEN FRAMES

ABBAS ASKARIZADEH*, MOHAMMAD ALI DEHGHAN

Department of Mathematics, Vali-e-Asr University, Rafsanjan 7713936417, Iran a.askari@vru.ac.ir; dehghan@vru.ac.ir

ABSTRACT. In this paper we consider some results in woven frames. We study frames $\{\phi_i\}_{i\in\mathcal{I}}$ and $\{\phi_{\pi(i)}\}_{i\in\mathcal{I}}$ for the Hilbert space H where π is a permutation function on \mathcal{I} , and give some results that $\{\phi_i\}_{i\in\sigma} \cup \{\phi_{\pi(i)}\}_{i\in\sigma^c}$ is a frame for H, where σ is a subset of \mathcal{I} . In fact, we study the phase retrieval property and reordered weavings.

1. INTRODUCTION

Bemrose, Casazza, Grochenig, Lammers and Lynch in 2016 [?], introduced woven frames. Two frames $\{\phi_i\}_{i\in\mathcal{I}}$ and $\{\psi_i\}_{i\in\mathcal{I}}$ for the Hilbert space H are called woven if there exist universal bounds A, B with $0 < A \leq B < \infty$ such that for each $\sigma \subset \mathcal{I}$

$$A \parallel x \parallel^2 \leq \sum_{i \in \sigma} |\langle x, \phi_i \rangle|^2 + \sum_{i \in \sigma^c} |\langle x, \psi_i \rangle|^2 \leq B \parallel x \parallel^2,$$

for all $x \in H$. Maybe the basic motivation to create woven frames is a problem in distributed signal processing [?], particularly in wireless sensor networks where distributed signal processing occures by various frames. . For more details about frames, woven frames and some their applications we refer the redear to [?, ?]. In 2019 *P*-woven frames are introduced [?], which are easier in applications than woven frames. The frames $\{\phi_i\}_{i\in\mathcal{I}}$ and $\{\psi_i\}_{i\in\mathcal{I}}$ are said to be *P*-woven if for some $\sigma \subset \mathcal{I}$ the family $\{\phi_i\}_{i\in\sigma} \cup \{\psi_i\}_{i\in\sigma^c}$ is a frame for *H*.

²⁰²⁰ Mathematics Subject Classification. Primary 15A04; Secondary 15A21

 $K\!ey\ words\ and\ phrases.$ frame, woven frame, phase retrieval.

^{*} Speaker.

In this section at first, we mention the definition of frames and some basic properties of them in a separable Hilbert space H. After that we review the definition of woven frames. For more details, the reader is referred to [?, ?]. Throughout the paper, H is a separable Hilbert space and \mathcal{I} is a countable index set.

A family $\{\phi_i\}_{i \in \mathcal{I}}$ in H is a frame for H if there exist constants $0 < A \leq B < \infty$ such that for all $x \in H$,

$$A||x||^2 \le \sum_{i \in \mathcal{I}} |\langle x, \phi_i \rangle|^2 \le B||x||^2,$$

where A and B are called lower and upper frame bounds, respectively. If only B is assumed to exist, then $\{\phi_i\}_{i\in\mathcal{I}}$ is called a Bessel sequence. If A = B, then $\{\phi_i\}_{i\in\mathcal{I}}$ is called a tight frame, also it is called Parseval if A =B = 1. A frame $\{\phi_i\}_{i\in\mathcal{I}}$ is called exact when it ceases to be a frame when an arbitrary element is removed. Corresponding to each Bessel sequence $\{\phi_i\}_{i\in\mathcal{I}}$ in H, one can consider some important operators. The analysis operator $T : H \to l^2(\mathcal{I})$ is defined by $Tx = \{\langle x, \phi_i \rangle\}_{i\in\mathcal{I}}$. The synthesis operator $T^* : l^2(\mathcal{I}) \to H$ is given by $T^*\{c_i\}_{i\in\mathcal{I}} = \sum_{i\in\mathcal{I}} c_i\phi_i$, which is really the adjoin of the analysis operator T. In the case that $\{\phi_i\}_{i\in\mathcal{I}}$ is a frame for H, the frame operator $S : H \to H$ is defined by

$$Sx := T^*Tx = \sum_{i \in \mathcal{I}} \{ \langle x, \phi_i \rangle \} \phi_i,$$

for each $x \in H$. It is well-known that, S is bounded, positive, self-adjoint and invertible. A frame which is a Schauder basis is called a Riesz basis. A frame which is not a Riesz basis is said to be overcomplete. A collection $\{\phi_i^j\}_{i\in I}, j = 1, \ldots, n, \text{ of frames for } H \text{ is called a woven frame for } H, \text{ if for}$ each partition $\{\sigma_1, \ldots, \sigma_n\}$ of \mathcal{I} the family $\{g_i\}_{i\in \mathcal{I}}$ is a frame for H, where $g_i = \phi_i^j$ for all $i \in \sigma_j, j = 1, \ldots, n$. Also, $\{\phi_i^j\}_{i\in I}, j = 1, \ldots, n, \text{ is called a}$ P-woven frame for H, if there exists a partition $\{\sigma_1, \ldots, \sigma_n\}$ of \mathcal{I} such that the family $\{g_i\}_{i\in \mathcal{I}}$ is a frame for H.

2. Main results

A family $\{\phi_i\}_{i\in\mathcal{I}}$ in a Hilbert space H is said to be phase retrieval in H if whenever $x, y \in H$ satisfy

$$|\langle x, \phi_i \rangle| = |\langle y, \phi_i \rangle|,$$

for all $i \in \mathcal{I}$, then $x = \pm y$. A family $\{\phi_i\}_{i \in \mathcal{I}}$ for a separable infinite dimensional Hilbert space H is called has complement property, whenever for each $\mathcal{J} \subset \mathcal{I}$ one can deduce that $\overline{\text{span}}\{\phi_i\}_{i \in \mathcal{J}} = H$ or $\overline{\text{span}}\{\phi_i\}_{i \in \mathcal{I} \setminus \mathcal{J}} = H$. In finite dimensional case a set of vectors $\{\phi_i\}_{i=1}^M$ in an N-dimensional Hilbert space H is a full spark frame if either they are independent or if $M \geq N+1$, then they have spark N+1. Also, a frame $\{\phi_i\}_{i \in \mathcal{I}}$ is called m-uniform excess for H, whenever for each $\sigma \subset \mathcal{I}$ with $|\sigma| = m$, $\{\phi_i\}_{i \in \mathcal{I} \setminus \sigma}$ is a frame for

 $\mathbf{2}$

H. The following proposition, is of much interesting when H is of infinite dimension.

Proposition 2.1. Let H be an infinite dimensional separable Hilbert space. If $\{\phi_i\}_{i \in \mathcal{I}}$ does phase retrieval for H, then for each permutation function π on \mathcal{I} , the families $\{\phi_i\}_{i \in \mathcal{I}}$ and $\{\phi_{\pi(i)}\}_{i \in \mathcal{I}}$ are woven.

Now, we state and prove the main theorem of this section.

Theorem 2.2. Suppose that $\{\phi_i\}_{i=1}^M$ is a frame for an *N*-dimensional Hilbert space *H*. If $\{\phi_i\}_{i=1}^M$ is woven with any its reordering, then $\{\phi_i\}_{i=1}^M$ does phase retrieval in *H*.

Corollary 2.3. Suppose that $\{\phi_i\}_{i=1}^M$ is a frame for N-dimensional Hilbert space H where $M \ge 2N - 1$. Then $\{\phi_i\}_{i=1}^M$ is woven with any its reordering if and only if $\{\phi_i\}_{i=1}^M$ does phase retrieval in H.

Proposition 2.4. Assume that $\{\phi_i\}_{i=1}^M$ is a frame for N-dimensional Hilbert space H and π is a permutation function on \mathcal{I} . Then for each $\sigma \subset \mathcal{I}$ the weavings $\{\phi_i\}_{i\in\sigma} \cup \{\phi_{\pi(i)}\}_{i\in\sigma^c}$ are full spark frames if and only if $\{\phi_i\}_{i=1}^M$ is full spark and $\pi = I_d$.

The following example, shows that there are frames which are woven with each reordering of itself.

Example 2.5. Take the frame $\{\psi_i\}_{i=1}^M$ for the *N*-dimensional Hilbert space $H = \mathbb{C}^N$ as

$$\psi_i = \begin{cases} e_i & i = 1, 2, \dots, N\\ \sum_{i=1}^N e_i & i = N+1, \dots, M, \end{cases}$$

where $M \ge 2N$, and $\{e_i\}_{i=1}^N$ is the standard orthonormal basis for H. Then for each permutation function π on \mathcal{I} , $\{\psi_i\}_{i=1}^M$ and $\{\psi_{\pi(i)}\}_{i=1}^M$ are woven.

3. VARIABLE EXPONENT VERSION OF THE INTEGRAL MEANS

References

- 1. T. Bemrose, P. G. Casazza, K. Gröchenig, M. C. Lammers and R. G. Lynch, Weaving frames, Operators and Matrices, 10, 4 (2016), 1093-1116.
- 2. P.G. Casazza, and J. Kovačević, Uniform tight frames with erasures, preprint, 2001.
- 3. O. Christensen, An Introduction to Frames and Riesz Bases, 2nd edn, Birkhauser, Boston, (2015).
- A. B. Hafshejani, M. A. Dehghan, P-woven frames, Journal of Mathematical Analysis and Applications, 479 (2019) 673-687.
- 5. B. Cyganek, Obeject detection and recognition in digital images (theory and practice), A John Wiley and Sons, 2013.