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Abstract. In this paper we consider some results in woven frames. We
study frames {ϕi}i∈I and {ϕπ(i)}i∈I for the Hilbert space H where π
is a permutation function on I, and give some results that {ϕi}i∈σ ∪
{ϕπ(i)}i∈σc is a frame for H, where σ is a subset of I. In fact, we study
the phase retrieval property and reordered weavings.

1. Introduction

Bemrose, Casazza, Grochenig, Lammers and Lynch in 2016 [?], intro-
duced woven frames. Two frames {ϕi}i∈I and {ψi}i∈I for the Hilbert space
H are called woven if there exist universal bounds A,B with 0 < A ≤ B <∞
such that for each σ ⊂ I

A ∥ x ∥2≤
∑
i∈σ

| ⟨x, ϕi⟩ |2 +
∑
i∈σc

| ⟨x, ψi⟩ |2≤ B ∥ x ∥2,

for all x ∈ H. Maybe the basic motivation to create woven frames is a
problem in distributed signal processing [?], particularly in wireless sensor
networks where distributed signal processing occures by various frames. .
For more details about frames, woven frames and some their applications
we refer the redear to [?, ?]. In 2019 P -woven frames are introduced [?],
which are easier in applications than woven frames. The frames {ϕi}i∈I and
{ψi}i∈I are said to be P -woven if for some σ ⊂ I the family {ϕi}i∈σ∪{ψi}i∈σc

is a frame for H.
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In this section at first, we mention the definition of frames and some basic
properties of them in a separable Hilbert space H. After that we review the
definition of woven frames. For more details, the reader is referred to [?, ?].
Throughout the paper, H is a separable Hilbert space and I is a countable
index set.

A family {ϕi}i∈I in H is a frame for H if there exist constants 0 < A ≤
B <∞ such that for all x ∈ H,

A∥x∥2 ≤
∑
i∈I

|⟨x, ϕi⟩|2 ≤ B∥x∥2,

where A and B are called lower and upper frame bounds, respectively. If
only B is assumed to exist, then {ϕi}i∈I is called a Bessel sequence. If
A = B, then {ϕi}i∈I is called a tight frame, also it is called Parseval if A =
B = 1. A frame {ϕi}i∈I is called exact when it ceases to be a frame when
an arbitrary element is removed. Corresponding to each Bessel sequence
{ϕi}i∈I in H, one can consider some important operators. The analysis
operator T : H → l2(I) is defined by Tx = {⟨x, ϕi⟩}i∈I . The synthesis
operator T ∗ : l2(I) → H is given by T ∗{ci}i∈I =

∑
i∈I ciϕi, which is really

the adjoin of the analysis operator T . In the case that {ϕi}i∈I is a frame
for H, the frame operator S : H → H is defined by

Sx := T ∗Tx =
∑
i∈I

{⟨x, ϕi⟩}ϕi,

for each x ∈ H. It is well-known that, S is bounded, positive, self-adjoint
and invertible. A frame which is a Schauder basis is called a Riesz basis.
A frame which is not a Riesz basis is said to be overcomplete. A collection
{ϕji}i∈I , j = 1, . . . , n, of frames for H is called a woven frame for H, if for
each partition {σ1, . . . , σn} of I the family {gi}i∈I is a frame for H, where
gi = ϕji for all i ∈ σj , j = 1, . . . , n. Also, {ϕji}i∈I , j = 1, . . . , n, is called a
P -woven frame for H, if there exists a partition {σ1, . . . , σn} of I such that
the family {gi}i∈I is a framr for H.

2. Main results

A family {ϕi}i∈I in a Hilbert space H is said to be phase retrieval in H
if whenever x, y ∈ H satisfy

| < x, ϕi > | = | < y, ϕi > |,

for all i ∈ I, then x = ±y. A family {ϕi}i∈I for a separable infinite dimen-
sional Hilbert space H is called has complement property, whenever for each
J ⊂ I one can deduce that span{ϕi}i∈J = H or span{ϕi}i∈I\J = H. In
finite dimensional case a set of vectors {ϕi}Mi=1 in an N -dimensional Hilbert
space H is a full spark frame if either they are independent or if M ≥ N+1,
then they have spark N + 1. Also, a frame {ϕi}i∈I is called m-uniform ex-
cess for H, whenever for each σ ⊂ I with |σ| = m, {ϕi}i∈I\σ is a frame for
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H. The following proposition, is of much interesting when H is of infinite
dimension.

Proposition 2.1. Let H be an infinite dimensional separable Hilbert space.
If {ϕi}i∈I does phase retrieval for H, then for each permutation function π
on I, the families {ϕi}i∈I and {ϕπ(i)}i∈I are woven.

Now, we state and prove the main theorem of this section.

Theorem 2.2. Suppose that {ϕi}Mi=1 is a frame for an N -dimentional Hilbert
space H. If {ϕi}Mi=1 is woven with any its reordering, then {ϕi}Mi=1 does phase
retrieval in H.

Corollary 2.3. Suppose that {ϕi}Mi=1 is a frame for N -dimentional Hilbert
space H where M ≥ 2N − 1. Then {ϕi}Mi=1 is woven with any its reordering
if and only if {ϕi}Mi=1 does phase retrieval in H.

Proposition 2.4. Assume that {ϕi}Mi=1 is a frame for N -dimentional Hilbert
space H and π is a permutation function on I. Then for each σ ⊂ I the
weavings {ϕi}i∈σ ∪ {ϕπ(i)}i∈σc are full spark frames if and only if {ϕi}Mi=1 is
full spark and π = Id.

The following example, shows that there are frames which are woven with
each reordering of itself.

Example 2.5. Take the frame {ψi}Mi=1 for the N -dimentional Hilbert space
H = CN as

ψi =

{
ei i = 1, 2, . . . , N∑N

i=1 ei i = N + 1, . . . ,M,

where M ≥ 2N , and {ei}Ni=1 is the standard orthonormal basis for H. Then
for each permutation function π on I, {ψi}Mi=1 and {ψπ(i)}Mi=1 are woven.

3. Variable exponent version of the integral means
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