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Abstract. In this paper, we verify Hermite-Hadamard integral in-
equality on some types of convex functions. Previous results are some
part of our consequences.

1. Introduction

Let f : I ⊂ R → R be a convex function on an interval I and x, y ∈ I.
Then (trapezium inequality)

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(t) dt ≤ f(a) + f(b)

2
. (1.1)

This double inequality is known in the literature as the Hermite-Hadamard
(HH) integral inequality for convex functions.

2. Preliminary

Definition 2.1 ([12]). Let m, t, α ∈ [0, 1]. Then the real number set C ⊆ R
is said to be

(1) convex if tx+ (1− t)y ∈ C;
(2) m-convex if tx+ (1− t)my ∈ C;
(3) (α,m)-convex if tαx+ (1− tα)my ∈ C;
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for all x, y ∈ C and t,m ∈ [0, 1].

Definition 2.2 ([3, 4, 9, 10, 12]). Let m ∈ [0, 1] and C ⊆ R. A function
f : C ⊂ R → R is said to be an

(1) convex, if C be a convex set and

f(tx+ (1− t)y] ≤ tf(x) + (1− t)f(y);

(2) m-convex, if C be a m-convex set and

f(tx+ (1− t)my] ≤ tf(x) + (1− t)mf(y);

(3) (α,m)-convex, if C be a (α,m)-convex set and

f(tx+ (1− t)my] ≤ tαf(x) + (1− tα)mf(y);

(4) f is concave if −f is convex;
(5) f is m-concave if −f is m-convex.
(6) f : [a, b] → R is star shaped if f(tx) ≤ tf(x) for all t ∈ [0, 1] and

x ∈ [a, b].

for all x, y ∈ C and t,m ∈ [0, 1].

Remark 2.3. ([10, 7])

(1) When t = 1, we get f(my) ≤ mf(y) for all x, y ∈ I, means the
function f is sub-homogeneous.

(2) If f was convex function and m = 1, it would be m-convex function.

Lemma 2.4. ([4, 7])

(1) If f : C → R is m-convex and 0 ≤ n < m ≤ 1, then f is n-convex.
(2) Let f, g : [a, b] → R, a ≥ 0. If f is n-convex and g is m-convex, with

n ≤ m, then f + g and αf , α ≥ 0 a constant, are n-convex.
(3) Let f : [0, a] → R, g : [0, b] → R, with renge(f) ⊆ [0, b]. If f and g

are m-convex and g is increasing, then g ◦ f is m-convex on [0, a].
(4) If f, g : [0, a] → R are both nonnegative, increasing and m-convex,

then fg is m-convex.

3. Main results

Put co(A) = {f : f is convex} and com(B) = {f : f is m− convex}. So
com(B) ⫋ co(A), See more detail in [1].

Theorem 3.1. Let m ∈ [0, 1] and C ⊆ R and function f : C ⊂ R → R be
a m-convex function on an interval C and a, b ∈ C. If a +mb = r + s for
every r and s. Then

f

(
a+mb

2

)
≤ 1

2

(
1

r − a

∫ r

a
f(u)du+m

1

mb− s

∫ mb

s
f(u)du

)
≤ f(r) +mf(s)

2
+

f(a) +mf(mb)

2
.
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Corollary 3.2. By hypothesis of Threorem 3.1 we have:

1

2

(
1

r − a

∫ r

a
f(u)du+m

1

mb− s

∫ mb

s
f(u)du

)
≤ f(r) + f(a)

2
+m

f(s) +mf(b)

2
.

Corollary 3.3.

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(t)dt ≤ f(a) + f(b)

4
+

1

2
f

(
a+ b

2

)
.

An other version of Theorem 3.1:

Theorem 3.4. Let m ∈ [0, 1] and C ⊆ R and function f : C ⊂ R → R be a
m-convex function on an interval C and a, b ∈ C. Then

f

(
a+mb

2

)
≤ 1

mb− a

(∫ mb+a
2

a
f(u)du+m

∫ mb

mb+a
2

f(u)du

)

≤ f(a) +mf(b)

2

(
m+ 1

4

)
+

f(a) +m2f(b)

4

=
(3m+ 1)(mf(b)) + (m+ 3)f(a)

8
.

Corollary 3.5. By hypothesis of Theorem 3.4:

1

mb− a

(∫ mb+a
2

a
f(u)du+m

∫ mb

mb+a
2

f(u)du

)
≤ (3m+ 1)(mf(b)) + (m+ 3)f(a)

8
.

If we put m = 1 in Theorem 3.4, then we will find Hermite-–Hadamard
(HH) integral inequality.

For more details and some of related references see [2, 5, 6, 8, 11, 13].
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