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ABSTRACT. In this manuscript, we study the Sturm-Liouville problem
with conformable fractional differential operators of order a, 0.5 < o < 1
and finite number of interior discontinuous conditions. The asymptotic
formulas of solutions, eigenvalues and eigenfunctions of the problem are
calculated.

1. INTRODUCTION

Sturm—Liouville equation is one of the most important problems in math-
ematics, physics and engineering. This problem arises in modeling of many
systems in vibration theory, quantum mechanics, hydrodynamic and so on
[1, 2]. The classical Sturm—Liouville equation is a second order ordinary
differential equation of the following form:

v+ A—q(2)y=0, 0<x<m, (1.1)

where ¢(x) is the potential function and A is a parameter. For equation
(1.1) two boundary conditions at end points are considered. Equation (1.1)
with boundary conditions are called Sturm-Liouville problems (SLP). Frac-
tional Sturm-Liouville problems are different from those usually defined in
this literature, i.e. the ordinary derivatives in a traditional Sturm-Liouville
problem are replaced with fractional derivatives or derivatives of fractional
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order. These types of FSLP play a significant role in various areas of sci-
ence, engineering, and mathematics [3, 4, 5]. In this note, we study the
asymptotic form of characteristic function, eigenvalues, and eigenfunctions
of conformable fractional Sturm-Liouville problem (CFSLP).

2. ASYMPTOTIC FORM OF SOLUTIONS AND EIGENVALUES

In this section, we give definition and some theorems of the conformable
fractional(CF) derivative such that one can found in [0, 7]. In what follows,
we always take DS = D®.

Definition 2.1. For the function f : [0,00) — R, the CF derivative of f of
order « € (0, 1] defined by:
l—a) _
Do f(e) — tin LS~ f@)

e—0 e

for all x > 0, and
D*f(0) = lim D*f(x).
z—0t
If f is a differentiable function, then
D f(z) = &'~ f'(x).
If D% f(x¢) exists and is finite. Then the function f is a-differentiable at xg.

Definition 2.2. The conformable integral of function f of order « is defined
as:

JOf(x) = / f(s)das = / s@ L f(s)ds, x> 0.
0 0
where, the integrals are in Riemann setting.

Definition 2.3. For a real number 1 < p < oo and a > 0, the space L5(0, a)
is defined by

L(0,a) = {f . [0,a] — R, </O |g(t)]pdat>1/p < oo} .

Let us consider the CFSLP
Loy := —D*D% + qy = \y (2.1)
with boundary conditions
Bi(y) := D%(0) + hy(0) =0,
Bs(y) := D%(m) + Hy(m) =0, (2.2)
and finite number of transmission conditions
Ui(y) :== y(di+) — a;y(di—) = 0,
Vi(y) := D*y(di+) — biD"y(d;i—) — ciy(di—) = 0, (2.3)
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for:=1,2,...,m —1 and % < a < 1. The parameters h, H and a;, b;,
¢i, d; € (0,7m) are real numbers. We denote the problem (2.1)-(2.3) with
Lo = Lo(q(x); h; H;d;). Consider the weighted inner product

i s= [ Faw (0
where f,g € L§((0,7);w) and w(t) is the weight function of the form

17 0§t<d1)
L dy <t <ds,

a1by’

w(t) =

1
aiby-am—1bm—1’

dp—1 <t <.

Note that T' := L2((0,7);w) is a Hilbert space with the norm || f|lr =
( 7f>%p/2. Let A, : T — T with domain

B f,DYf € AC(UlY (dy,diyr)),
dom (4a) = {f € T’ tof € L%(O,m,( Ui() = Vilh) i }
by
Aof =Llof, fe€dom(A,).

Suppose f and g are two solutions ¢, f = Af, £,g = Ag satisfying the jump
conditions (2.3), the modified Wronskian

Walf,9) = w(@)(f(z)D*g(x) — D*f(z)g(x)) (2.4)

is constant for all @ € [0,dy) U2 (d;,d; + 1) U (dyn—1, 7]. Using the above
formula Wo(f, 9)(x) = Wal(f,g)(@o), for zo € [0,d) U (d,7]. So, Wa(f,g)
does not depend on x.

Lemma 2.4. The operator A, is self-adjoint on L§((0,7);w).

Let ¢(z, A) and v(z, A) be the solutions of (2.1) with the following initial
conditions

©(0,A) =1, D%%(0,\) = —h, (2.5)

Y(m, ) =1, D%(m,\)=—H, (2.6)

and the jump conditions (2.3), respectively. The characteristic function is
defined by

A = Wale(A), ¥(N) = Bi($(N) = —w(m)Ba((A).  (2.7)

Theorem 2.5. Let A = p? and 7 := |Imp|. For CSLP (2.1)~(2.3) as |A\| =
00, the asymptotic forms of solutions and the characteristic function formula
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are in the following forms:

p(z,A) =

D%p(x, \)

where

cos( )JrO( exp(T "‘)), 0<z<d,

o1 cos (2a%) + aj cos (£ (z* —2d§"))—|—0( exp (Zx O‘)), di < x < da,

ozloz2cosp(£ O‘)—i—o/lozgcos (ﬂ( « 2d1))+a1a2(:os (g(:f‘—?d%))
—|—a1a2cos( (z* +2d°‘—2d2))+0( exp(T "‘)), da < x < ds,

Q102 . . Qe 1c05( %) +
oz ... amo1cos (£(z* —2df)) +
+a1Q ... ah,_1 cos (a (z% —2dy,_4 )) +
o abas...am—1 cos (£ (x4 2d7 — 2d5)) +
+a ... a;- Q... Q1 COS (g(ma + 2d§ — ng))
ton .. 00 oo cos (£ (x® — 2d5 + 2df — 2dS)) +
ol ..o, cos (2(x® +2(=1)" Y +2(=1)"?ds — 2dy,))
+O( exp(T o‘))7 dm-1 <z <,

p[—sin(gzro‘)] +O(exp (ix‘l)), 0<z<d,
p[—aisin (£2%) — ofsin (£ (2% — 2d7))] + O (exp (Z2%)), di <z <dp,
p[ ozlozzblnp( O‘) —Ozlazbln( (z% — 2d¥ )) — a0 sm( (z* 2d2))

—ahakb sin (a(x + 2d$ — 2d2))] +0 (exp (; (’)) , de < x < ds,
p [—alag . Qyn—1 SN (gx"

—aaz ... am_1sin (£(z% —2d7)) +

—Q10s ... Oy _q sin (ﬁ(x“ - Qd%,l)) +

—ajohas. .. omo1sin (2(z* + 2dT — 2d5)) +

Qg Ot 1sin(ﬂ(xa+2da—2d°‘))
—Q1... 0. 0 O O 151n( (z* 2d°‘+2d“—2d“))

+ —afab. ..o,y sin (2(z* +2(—1)" Y +2(—1)"2ds — 2 d%))]
+0 (exp (gm“‘)), dm-1 <z <,

—1...Q

(2.9)

G0 g ol = i=1,2,...,m—1. (2.10)

Q; = 2 9 ’
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Also the similar asymptotic form holds for the solution . Moreover, we
have

A(N) =pw(m) |a1az ... Q-1 sin (g#") +alag ... apm_1sin (g(ﬂ'a - Qd?)) +---
+a1as...al, sin (g(ﬂ'a - 2d%_1)> + ajdbas ... a1 sin (g(ﬂ'a + 2d{ — 2d§“)>
—|—---—l—al...a;...a;...am,lsin (g(ﬂ'a—l—Qd?—ng))
+ar...0G. .. 0. .. Q.. Qo sin (g(ﬂ'a —2d§‘—|—2d‘,§—2d§)) + -

+ajad...al, _;sin (g(wa +2(=1)"" 1 + 2(—1)™ 24y — 2d$‘n)>]
vofon (59

Using Theorem 2.5 and Definition 2.1, we find

] =0 (a0 (Za)).

D ()] = [#12!(2, 1) = O <|p\ exp (ax» 0<r<n (212)

(2.11)

By changing x to m — z and using the jump conditions (2.3) and Definition
2.1, we calculate the asymptotic forms of v(z, A) and D%v(x, \). Specially,

() =0 (exp (Zn = 0)7) ).

ID(z, \)| = |21 (z,\)| = O (\p\ exp <;(7r - m)“)) , 0<z<m
(2.13)

Theorem 2.6. Let \, = p? be the eigenvalues of the problem L, then we
have the following asymptotic formula

pn = ar' ™% + O(1) (2.14)

as n — o0.
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