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Abstract. In this manuscript, we study the inverse problem for Dirac
operators with discontinuity conditions inside an interval. It is shown
that the potential functions can be uniquely determined by a part of a
set of values of eigenfunctions at an interior point and parts of one or
two sets of eigenvalues.

1. Introduction

Let us consider the Dirac operator

`[y(x)] := By′(x) + Ω(x)y(x) = λy(x) (1.1)

subject to the boundary conditions

U(y) := y1(0) cosα+ y2(0) sinα = 0,

V (y) := y1(π) cosβ + y2(π) sinβ = 0, (1.2)

and the jump conditions

C(y) := y(d+ 0) = Ay(d− 0), (1.3)

where x ∈ I := [0, d) ∪ (d, π], B =

(
0 1
−1 0

)
, Ω(x) =

(
p(x) q(x)
q(x) −p(x)

)
,
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y(x) =
(
y1(x), y2(x)

)T
, and A =

(
a 0
0 1

a

)
.

In this paper, the functions p(x) and q(x) are real valued in L2(0, π),
a ∈ R− {0}, α, β ∈ [0, π) and λ is a spectral parameter. For simplicity we
use L = L(Ω(x);α;β; d) for the above system of equation. It is easy to see
that the operator L is a self-adjoint operator. Indeed the operator L has a
discrete spectrum consisting simple and real eigenvalues λn, for n ∈ Z.

In the paper [1], Amirov study the direct and inverse problems for Dirac
operators with discontinuities inside an interval. Furthermore, direct or
inverse spectral problems for Dirac operators were extensively studied in
[5, 6], and the references therein. In this manuscript, we study the inverse
problem for Dirac differential operators with discontinuity conditions. It is
shown that the potential functions can be uniquely determined by a part of
a set of values of eigenfunctions at an interior point and parts of one or two
sets of eigenvalues.

2. Preliminaries

Let the functions u(., λ) : I → R2 be

Bu′(x) + Ω(x)u(x) = λu(x) (2.1)

u1(0) = sinα, u2(0) = − cosα.

with the jump conditions (1.3) where u(x, λ) = (u1(x, λ), u2(x, λ))T . It is
shown in [2], [3] and [4] that there exit kernels K(x, t) = (Kij(x, t)

2
i,j=1) with

entire continuously differentiable on 0 ≤ t ≤ x < d such that the solution
u(x, λ) is

u(x, λ) = u◦(x, λ) +

∫ x

0
K(x, t)u◦(t, λ)dt (2.2)

Here u◦(x, λ) =
(
u◦1(x, λ), u◦2(x, λ)

)T
. It is easy to check that the

following functions are solutions of (1.1) with Ω(x) = 0,

u◦1(x, λ) =

{
sin(λx+ α), 0 ≤ x < d,

a+ sin(λx+ α) + a− sin(λ(2d− x) + α), d < x ≤ π.
(2.3)

u◦2(x, λ) =

{
− cos(λx+ α), 0 ≤ x < d,

−a+ cos(λx+ α) + a− cos(λ(2d− x) + α), d < x ≤ π.
(2.4)

where a+ = 1
2

(
a+ 1

a

)
, and a− = 1

2

(
a− 1

a

)
. The characteristic function for(

u◦1(x, λ), u◦2(x, λ)
)T

is

∆◦(λ) := a+ sin(λπ + α− β) + a− sin(λ(2d− π) + α+ β). (2.5)

The roots of the entire function ∆◦(λ) are simple and real. The roots of
∆◦(λ) is

λ◦n = n+Mn (2.6)
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such that supnMn < M <∞.

Suppose v(x, λ) =
(
v1(x, λ), v2(x, λ)

)T
be the solution of (1.1) with

the initial conditions

v(π, λ) =
(

sinβ,− cosβ
)T
.

By changing x to π − x one can obtain the similar form of (1.2) for the
solution v(x, λ) on the interval (d, π].

We define the characteristic function for the operator L of the form

∆(λ) := 〈u(x, λ), v(x, λ)〉 =

∫ π

0
(u1v̄1 + u2v̄2)dx

The characteristic function ∆(λ) is independent of x. It flows from (2.2)
and the same form of (2.2) for v(x, λ) on the jump point x = d, so we have

∆(λ) = ∆◦(λ) +O

(
exp(|τ |π)

λ

)
(2.7)

where τ = |Imλ|. The zeros of ∆(λ) are the eigenvalues of L and hence it has
only simple and real zeros λn. We denote by yn(x) = (yn,1(x), yn,2(x))T , n ∈
Z, the corresponding eigenfunctions.

Theorem 2.1. The corresponding eigenvalues {λn} of the boundary value
problem L admit the following asymptotic form as n→∞:

λn = n+O(1). (2.8)

Suppose v(x, λ) =
(
v1(x, λ), v2(x, λ)

)T
be the solution of (1.1) with

the initial conditions

v(π, λ) =
(

sinβ,− cosβ
)T
.

By changing x to π − x one can obtain the similar form of (1.2) for the
solution v(x, λ) on the interval (d, π]. Define the characteristic function for
the operator L of the form

∆(λ) := 〈u(x, λ), v(x, λ)〉.

The characteristic function ∆(λ) is independent of x. It flows from (2.2)
and the same form of (2.2) for v(x, λ) on the jump point x = d, so we have

∆(λ) = ∆◦(λ) +O

(
exp(|τ |π)

λ

)
(2.9)

where τ = |Imλ|. The zeros of ∆(λ) are the eigenvalues of L and hence it has
only simple and real zeros λn. We denote by yn(x) = (yn,1(x), yn,2(x))T , n ∈
Z, the corresponding eigenfunctions.

Theorem 2.2. The corresponding eigenvalues {λn} of the boundary value
problem L admit the following asymptotic form as n→∞:

λn = n+O(1). (2.10)



4 SHAHRIARI

3. inverse problem

Let us introduce a second Dirac operator L̃ = L(Ω̃(x);α;β; d) here

Ω̃(x) =

(
p̃(x) q̃(x)
q̃(x) −p̃(x)

)
with a real valued function p̃(x), q̃(x) ∈ L2(0, π). The eigenvalues and

the corresponding eigenfunctions of L̃ are denoted by λ̃n and ỹn(x) =
(ỹn,1(x), ỹn,2(x))T (n ∈ Z), respectively.

Theorem 3.1. If
λn = λ̃n, 〈yn, ỹn〉d−0 = 0

for any n ∈ Z and d ≤ π
2 then p(x) = p̃(x), q(x) = q̃(x) a.e on the [0, d).

Remark 3.2. We can easily obtain if y, z be the solution of (1.1) and satisfy
the jump conditions (1.3) and 〈y, z〉(a−0) = 0 then 〈y, z〉(a+0) = 0

Corollary 3.3. Let d ∈ (π2 , π) be a jump point. Let λn = λ̃n, and 〈yn, ỹn〉(d−0) =

0, for each n ∈ Z. Then Ω(x) = Ω̃(x) almost everywhere on (d, π].

Remark 3.4. For d = π
2 from Theorems 3.1 and 3.3, we get Ω(x) = Ω̃(x)

almost everywhere on [0, π].

Theorem 3.5. Let d ∈ (π2 , π] be a jump point and σ > 2a
π − 1. Let

λn = λ̃n, µl(n) = µ̃l(n), and 〈yn, ỹn〉(d−0) = 0,

for each n ∈ Z. Then Ω(x) = Ω̃(x) almost everywhere on [0, d) ∪ (d, π].

Corollary 3.6. Let d ∈ (0, π2 ] be a jump point, fix b ∈ (0, d] and σ1 >
2b
π .

Let λm(n) = λ̃m(n) 〈yn, ỹn〉d−0 = 0, for each n ∈ Z. Then Ω(x) = Ω̃(x)
almost everywhere on [0, π].

Let r(n) be a subsequence of natural numbers such that

r(n) =
n

σ2
(1 + ε2n), 0 < σ2 ≤ 1, ε2n → 0 (3.1)

Corollary 3.7. Let d ∈ (π2 , π) be a jump point, fix σ > 2d
π − 1 and σ2 >

2− 2d
π . If for each n ∈ N

λn = λ̃n, µl(n) = µ̃l(n), 〈yr(n), ỹr(n)〉(d−0) = 0,

then Ω(x) = Ω̃(x) almost everywhere on [0, π].
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