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Abstract. By using variational methods and critical point theory, we
establish the existence of multiple solutions for a Neumann problem. We
prove the existence by applying the theory of variable exponent Sobolev
spaces.

1. Introduction

In the present paper, we want to establish the existence of multiple solu-
tions for the following problem{

−
∑N

i=1 ∂xiai(x, ∂xiu) + h(x)
∑N

i=1 ai(x, u) = λf(x, u) in Ω,∑N
i=1 ai(x, ∂xiu)νi = 0 on ∂Ω,

(1.1)

where Ω is a bounded domain in RN ( N ≥ 3) with smooth boundary ∂Ω,
νi of the outer normal unit vector to ∂Ω, λ is a positive parameter, while
f : Ω× R → R and ai : Ω× R → R are Carathéodory functions and h(x) is
a positive function such that h(.) ∈ L∞(Ω) and

h− = ess inf
x∈Ω

h(x) > 0, (1.2)
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and

h+ = ess sup
x∈Ω

h(x) > 0. (1.3)

In recent years variational problems with a nonstandard growth condition
have attracted the interest of many specialists and have led to many related
papers; for the generalized space theory, we refer the reader to [12], for the
existence and multiplicity of solutions of elliptic equations with nonstan-
dard growth condition, especially involving the p(x)-Laplacian, we refer the
reader to [13]. For application background, we refer the reader to [20]. For
anisotropic quasilinear elliptic equations, the working space is more general
than for the usual p(x)-Laplacian, in that different space directions have
different roles, so it possesses more inhomogeneity. In [9] Ding, Li and Bisci
established the existence of three solutions for the following problem −

∑N
i=1 ∂xi(|∂xiu|pi(x)−2∂xiu) +

∑N
i=1 |u|pi(x)−2u = λf(x, u) x ∈ Ω,

∂u

∂ν
= 0 x ∈ ∂Ω,

(1.4)
They proved that this problem possesses at least three distinct weak solu-
tions. We mention that if we focus on a certain type of the functions ai
as

ai(x, s) = |s|pi(x)−2s,

for all i ∈ {1, ..., N} and h(x) = 1, then our studying problem convert to
the problem (1.4).
The Elliptic problems in anisotropic form concerning the Sobolev space with
variable exponents have recently attracted the attention of many mathemati-
cians; see [3, 6, 7, 10, 21].
In recent years, studying the existence of nontrivial solution for boundary
value problems by applying Theorem 5.1 [2] have attracted the interest of
many researchers, see for example [14, 15, 16].
In [4], the authors study a general class of anisotropic problems with variable
exponents and constant Dirichlet condition{

−
∑N

i=1 ∂xiai(x, ∂xiu) + b(x)|u|pM (x)−2u = λf(x, u) x ∈ Ω,
u(x) = constant x ∈ ∂Ω.

(1.5)

The plane of this article is as follows. In section 2 we introduce our notation
and a suitable abstract setting. In section 3 we present the main results.

2. preliminaries

In this section we recall some definition and the main properties of the
spaces with variable exponents together with some results that we need for
the proof of our main results.
Define

C+(Ω) := {p : p ∈ C(Ω) and p(x) > 1, ∀x ∈ Ω}.
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For p ∈ C+(Ω), we introduce the Lebesgue space with variable exponent
defined by

Lp(x)(Ω) = {u : u ∈ S(Ω),

∫
Ω
|u(x)|p(x)dx < ∞},

where S(Ω) denotes the set of all measurable real functions on Ω.
This space, endowed with the Luxemburg norm

|u|Lp(x)(Ω) = |u|p(x) = inf{τ > 0 :

∫
Ω
|u(x)

τ
|p(x)dx ⩽ 1},

is a separable and reflexive Banach space. We refer to [8, 12, 18, 19] for the
elementary properties of these spaces.

Proposition 2.1. ([12]) If 0 < |Ω| < ∞ and q1, q2 are variable exponents

so that q1(x) ⩽ q2(x) a. e. in Ω then the embedding Lq2(x)(Ω) ↪→ Lq1(x) is
continuous.

Let
p+ = max

x∈Ω
p(x), p− = min

x∈Ω
p(x).

Proposition 2.2. ([8]) The conjugate space of Lp(x) is Lp′(x) where p′(x) is
the conjugate function of p(x), i.e.

1

p(x)
+

1

p′(x)
= 1.

For u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω), we have the Holder-type inequality

|
∫
Ω
u(x)v(x)dx| ⩽ (

1

p−
+

1

p′−
)|u|p(x)|v|p′(x).

To recall the definition of the isotropic Sobolev space with variable expo-
nent, W 1,p(x), we set

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)},
endowed with the norm

∥u∥ = ∥u∥W 1,p(x)(Ω) = |u|Lp(x)(Ω) + |∇u|Lp(x)(Ω). (2.1)

The space W 1,p(x)(Ω), equipped with the norm 2.1 becomes a separable,
reflexive and uniformly convex Banach space. See for more details [1].

For u ∈ W 1,p(x)(Ω), define

∥u∥h = inf{η > 0 :

∫
Ω
(|∇u

η
|p(x) + h(x)|u

η
|p(x))dx ⩽ 1}. (2.2)

Remark 2.3. According to [11], ∥u∥h is a norm on W 1,p(x)(Ω) equivalent to
∥u∥W 1,p(x)(Ω) .

Proposition 2.4. ([12]) For p ∈ C(Ω) such that p− > N for all x ∈ Ω,
there is a compact embedding

W 1,p(x)(Ω) ↪→ C0(Ω).
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Proposition 2.5. ([12]) Let κ(u) =
∫
Ω |∇u|p(x)dx. For un, u ∈ W 1,p(x)(Ω),

we have

(1) ∥u∥ < (=;>)1 ⇐⇒ κ(u) < (=;>)1,

(2) ∥u∥ ⩾ 1 =⇒ ∥u∥p− ⩽ κ(u) ⩽ ∥u∥p+ ,
(3) ∥u∥ ⩽ 1 =⇒ ∥u∥p+ ⩽ κ(u) ⩽ ∥u∥p− ,
(4) ∥un∥ → 0 ⇐⇒ κ(un) → 0, and ∥un∥ → ∞ ⇐⇒ κ(un) → ∞.

We assume in the sequel that Ω is a bounded open domain in RN and we
denote by

−→p (.) : Ω → RN

the vectorial function

−→p (.) = (p1(.), ..., pN (.)).

We define W 1,−→p (.)(Ω), the anisotropic variable exponent Sobolev space with
respect to the norm

∥u∥−→p (.) = ∥u∥W 1,−→p (.)(Ω) =
N∑
i=1

inf{σ > 0 ; (

∫
Ω
|∂xiu

σ
|pi(x)dx+

∫
Ω
h(x)|u

σ
|pi(x)dx) ⩽ 1}.

(2.3)

It was argued in [11] that W 1,−→p (.)(Ω) is a reflexive Banach space and a
seperable space.
On the other hand, for the convenience of working with the spaceW 1,−→p (.)(Ω)
we introduce −→p +,

−→p − in RN as

−→p + = (p+1 , ..., p
+
N ), −→p − = (p−1 , ..., p

−
N ),

and

p++ = max{p+1 , ..., p
+
N}, p−− = min{p−1 , ..., p

−
N}.

Suppose that
N∑
i=1

1

p+i
< 1. (2.4)

Then it is proved in [9] that W 1,−→p (.)(Ω) is compactly embedded in C0(Ω)
and there exists a constant c > 0 such that

∥u∥∞ ⩽ c∥u∥−→p (.), ∀ u ∈ W 1,−→p (.)(Ω), (2.5)

where ∥u∥∞ := supx∈Ω |u(x)|.
In [2] Bonnano proposed the following innovative theorems for the study of
nonlinear problems:

Theorem 2.6. ([2] Theorem 5.2) Let X be a reflexive real Banach space,
Φ : X → R be a sequentially weakly lower semicontinuous, coercive, and con-
tinuously Gâteaux differentiable functional whose Gâteaux derivative admits
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a continuous inverse on X∗, and Ψ : X → R be a continuously Gâteaux dif-
ferentiable functional whose Gâteaux derivative is compact. Let Iλ = Φ−λΨ
and for fix r > infX Φ let φ be the function defined as

φ(r) := inf
v∈Φ−1(]−∞,r[)

supu∈Φ−1(]−∞,r[)Ψ(u)−Ψ(u)

r − Φ(v)
.

Then, for each λ ∈]0, 1

φ(r)
[ there is u0,λ ∈ Φ−1(]−∞, r[) such that Iλ(u(0,λ)) ⩽

Iλ(u) for all u ∈ Φ−1(]−∞, r[) and I ′λ(u(0,λ)) = 0.

Let us denote by Ai : Ω×R → R, i ∈ {1, ..., N}, and by F : Ω×R → R the
antiderivatives of the Carathéodory functions ai : Ω × R → R, respectively
f : Ω× R → R; that is,

Ai(x, s) =

∫ s

0
ai(x, t)dt, (2.6)

F (x, s) =

∫ s

0
f(x, t)dt. (2.7)

For every i ∈ {1, ..., N}, we work under the following assumptions:

(b1) There exists a positive constant ci such that ai fulfills

|ai(x, s)| ⩽ ci|s|pi(x)−1, (2.8)

for all x ∈ Ω and all s ∈ R.
So

|Ai(x, s)| ⩽ ci|s|pi(x). (2.9)

(b2) There exists ki > 0 such that

ki|s|pi(x) ⩽ ai(x, s)s ⩽ pi(x)Ai(x, s), (2.10)

for all x ∈ Ω and all s ∈ R.
(b3) ai(x, 0) = 0 for all x ∈ ∂Ω.
(b4) ai fulfills

(ai(x, s)− ai(x, t))(s− t) > 0, (2.11)

for all x ∈ Ω and s, t ∈ R with s ̸= t.
(b5) There exist k > 0 and q ∈ C+(Ω) with p++ < q− < q+ < p∗(x) for all

x ∈ Ω, where

p(x) =
N∑N

i=1

1

pi(x)

,

r∗(x) =


N r(x)

N − r(x)
if r(x) < N,

∞ if r(x) ⩾ N,
(2.12)

such that f verifies

|f(x, s)| ⩽ k(1 + |s|q(x)−1), (2.13)

for all x ∈ Ω and all s ∈ R.
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(b6) There exist γ > p++ and s0 > 0 such that the Ambrosetti-Rabinowitz
condition

0 < γF (x, s) < sf(x, s),

holds for all x ∈ Ω and for all s ∈ R with |s| > s0.

Definition 2.7. We say that u ∈ W 1,−→p (.)(Ω) is a weak solution of the
problem (1.1) if∫

Ω

N∑
i=1

ai(x, ∂xiu) ∂xiv dx+

∫
Ω

N∑
i=1

h(x)ai(x, u) v dx = λ

∫
Ω
f(x, u) v dx

for all v ∈ W 1,−→p (.)(Ω).

Foe each u ∈ W 1,−→p (.)(Ω), let the functionals Φ,Ψ : W 1,−→p (.)(Ω) → R be
defined by

Φ(u) =

∫
Ω

N∑
i=1

Ai(x, ∂xiu) dx+

∫
Ω

N∑
i=1

h(x)Ai(x, u) dx, (2.14)

and

Ψ(u) =

∫
Ω
F (x, u(x)) dx. (2.15)

By standard arguments, it follows that the functionals Φ and Ψ are well
defined and of class C1, and with the derivatives given by

< Φ′(u), v >=

∫
Ω

N∑
i=1

ai(x, ∂xiu) ∂xiv dx+

∫
Ω

N∑
i=1

h(x)ai(x, u) v dx, (2.16)

< Ψ′(u), v >=

∫
Ω
f(x, u(x)) v(x) dx, (2.17)

for any u, v ∈ W 1,−→p (.)(Ω).

Lemma 2.8. For all u ∈ W 1,−→p (.)(Ω) we have

(i) if ∥u∥−→p (.) ⩾ 1 then

min{k1, ..., kN}
p++

∥u∥p
−
−

−→p (.)
⩽ Φ(u) ⩽ max{c1, ..., cN}∥u∥p

+
+

−→p (.)
,

(ii) if ∥u∥−→p (.) ⩽ 1 then

min{k1, ..., kN}
p++

∥u∥p
+
+

−→p (.)
⩽ Φ(u) ⩽ max{c1, ..., cN}∥u∥p

−
−

−→p (.)
.

Proof. It is an immediate result of (2.8) and (2.13) in the case where ki
corresponds to pi. □

Lemma 2.9. The functional Φ is coercive.
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Proof. Let u ∈ W 1,−→p (.)(Ω) be such that ∥u∥−→p (.) → ∞. By Lemma (2.8) we

deduce that for any u ∈ W 1,−→p (.)(Ω) with ∥u∥−→p (.) > 1 we have

Φ(u) ⩾ min{k1, ..., kN}
p++

∥u∥p
−
−

−→p (.)
.

Hence Φ is coercive. □

The following theorem guarantees the coercivity and continuity of the
Gâteaux derivative of the functional Φ.

Theorem 2.10. ([17]Theorem 6.2.1 ). Let X be a reflexive Banach space,
and let f : M ⊆ X → R be Gâteaux differentiable over the closed, convex
set M . Then the following conditions are equivalent:

(i) f is convex over M .
(ii) We have

f(u)− f(v) ⩾ < f ′(v), u− v >X∗×X ∀u, v ∈ M,

where X∗ denotes the dual of the space X.
(iii) The first Gâteaux derivative is monotone, that is,

< f ′(u)− f ′(v), u− v >X∗×X ⩾ 0 ∀u, v ∈ M.

(iv) The second Gâteaux derivative of f exists and it is positive, that is,

< f ′′(u) ◦ v, v >X∗×X ⩾ 0 ∀v ∈ M.

Lemma 2.11. The functional Φ is sequentially weakly lower semi-continuous.

Proof. By ([5] Section 1.4), it is enough to prove that Φ is lower semi-

continuous. To this end, fix u ∈ W 1,−→p (.)(Ω) and ε > 0. By (b4) and

Theorem 2.10 (iii) we deduce that for any v ∈ W 1,−→p (.)(Ω), the following
inequality holds:

Φ(v)− Φ(u) ⩾< Φ′(u), v − u >W 1,−→p (.)(Ω)×(W 1,−→p (.)(Ω))∗ ,

Φ(v) ⩾ Φ(u)+

∫
Ω

N∑
i=1

ai(x, ∂xiu)(∂xiv−∂xiu)dx+

∫
Ω

N∑
i=1

h(x)ai(x, u)(v−u)dx,

using (b1) and

Φ(v) ⩾ Φ(u)−max{c1, ..., cN}
∫
Ω

N∑
i=1

|∂xiu|pi(x)−1 | ∂
∂xi

(v − u)| dx

−∥h∥L∞ max{c1, ..., cN}
∫
Ω

N∑
i=1

|u|pi(x)−1 |v − u| dx,

⩾ Φ(u)−(
1

p−−
+

1

p′−−
)max{c1, ..., cN}

∫
Ω

N∑
i=1

| |∂xiu|pi(x)−1|
Lp′

i
(x)(Ω)

|∂xiv−∂xiu|Lpi(x)(Ω) dx
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−∥h∥L∞(
1

p−−
+

1

p′−−
)max{c1, ..., cN}

∫
Ω

N∑
i=1

| |u|pi(x)−1|
Lp′

i
(x)(Ω)

|v−u|Lpi(x)(Ω) dx.

The above inequality and relation (4) imply that there exists M > 0 such
that

Φ(v) ⩾ Φ(u)−M∥v − u∥ ⩾ Φ(u)− ε,

for all v ∈ W 1,−→p (.)(Ω) with ∥v − u∥ < δ =
ε

M
. Therefore Φ is sequentially

weakly lower semi-continuous. □

Now, we state our first main results as follows.

Theorem 2.12. Assume that

sup
γ>0

min{k1, ..., kn}γp
−
−∫

Ω sup|t|⩽γ F (x, t)dx
> p++c

p−− , (2.18)

where c is the constant defined in (2.5). Then the problem (1.1) admits at

least one weak solution in W 1,−→p (.)(Ω).

Proof. Our aim is to apply Theorem 2.6 to our problem. To this end, let
Φ, Ψ be the functionals defined in (2.14) and (2.15). Ψ′ : W 1,−→p (.)(Ω) →
W 1,−→p (.)(Ω)∗ is a compact operator. Indeed, it is enough to show that Ψ′

is strongly continuous on W 1,−→p (.)(Ω). Fr fixed u ∈ W 1,−→p (.)(Ω), let un → u

weakly in W 1,−→p (.)(Ω) as n → ∞, then un converges uniformly to u on Ω as

n → ∞( see [22]). Since f is continuous in R for every W 1,−→p (.)(Ω) ∈ Ω so
f(x, un) → f(x, u), as n → ∞. Hence, Ψ′(un) → Ψ′(u) as n → ∞. Thus

the functional Ψ′ is strongly continuous on W 1,−→p (.)(Ω), which implies that
Ψ′ is a compact operator by proposition 26.2 of [22] ( On the other hand

the fact that W 1,−→p (.)(Ω) is compactly embedded into C0(Ω) implies that the

operator Ψ′ : W 1,−→p (.)(Ω) → W 1,−→p (.)(Ω)∗ is compact).
Now, we observe that Φ′ is uniformly monotone. It follows that the func-
tional
Φ′ : W 1,−→p (.)(Ω) → (W 1,−→p (.)(Ω))∗ has a continuous inverse operator on

(W 1,−→p (.)(Ω))∗, where (W 1,−→p (.)(Ω))∗ denotes the dual space of W 1,−→p (.)(Ω).
Furthermore, according to Lemma 2.9 and Lemma 2.11 Φ is coercive and
sequentially weakly lower semicontinuous.
So the functionals Φ, Ψ satisfy all regularity assumptions requested in The-
orem 2.6.
By using condition (2.18), there exists γ > 0 such that

min{k1, ..., kn}γp
−
−∫

Ω sup|t|⩽γ F (x, t)dx
> p++c

p−− . (2.19)

Choose

r =
min{k1, ..., kn}

p++
(
γ

c
)p

−
− .
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Moreover, for all u ∈ W 1,−→p (.)(Ω) with Φ(u) < r, from lem 2.8, one has

∥u∥p ⩽ max{(p++r)

1

p++ , (p++r)

1

p−− }.
So, due to the (2.5), one has ∥u∥∞ < γ.
From the definition of r, it follows that

Φ−1(−∞, r) = {u ∈ W 1,−→p (.)(Ω); Φ(u) < r} ⊆ {u ∈ W 1,−→p (.)(Ω); |u| ⩽ γ},
and this follows

Ψ(u) ⩽ sup
u∈Φ−1(−∞,r)

∫
Ω
F (x, u(x))dx ⩽

∫
Ω
sup
|t|⩽γ

F (x, t)dx,

for every u ∈ W 1,−→p (.)(Ω) such that Φ(u) < r. Then

sup
Φ(u)<r

Ψ(u) ⩽
∫
Ω
sup
|t|⩽γ

F (x, t)dx.

From the definition of φ(r), since 0 ∈ Φ−1(−∞, r) and Φ(0) = Ψ(0) = 0,
one has

φ(r) = inf
v∈Φ−1(]−∞,r[)

supu∈Φ−1(]−∞,r[)Ψ(u)−Ψ(u)

r − Φ(v)
⩽

supu∈Φ−1(−∞,r)Ψ(u)

r

⩽
∫
Ω sup|t|⩽γ F (x, t)dx

min{k1, ..., kn}
p++

(
γ

c
)p

−
−

.

At this point, we see that

φ(r) ⩽
∫
Ω sup|t|⩽γ F (x, t)dx

min{k1, ..., kn}
p++

(
γ

c
)p

−
−

. (2.20)

From (2.18) and (2.19) one has φ(r) < 1. Hence, since 1 ∈ (0,
1

φ(r)
), by

applying Theorem2.6 the functional Iλ admits at least one critical point
(local minima) u ∈ Φ−1(−∞, r). □
Example 2.13. Let Ω = {(x1, x2, x3) ∈ R3 : x21 + x22 + x23 ⩽ 9}. consider
the following problem −

∑3
i=1 ∂xi(|∂xiu|pi(x)−2∂xiu) +

∑3
i=1 |u|pi(x)−2u = λeu(u+ u2) x ∈ Ω,

∂u

∂ν
= 0 x ∈ ∂Ω,

(2.21)
where pi(x) = x2i +9 for all x1, x2, x3 ∈ R. We have F (t) = et(t2− t+1)−1,
for every t ∈ R. We obtain p−− = 9 and p++ = 18. Since

sup
γ>0

γ9

sup|t|⩽γ e
t(t2 − t+ 1)− 1

> 18c9meas(Ω),
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hence, Theorem 2.12 implies that the problem (2.21) admits at least one

weak solution in W 1,−→p (.)(Ω).

Now, we state second main results to find three weak solutions for the
problem (1.1). Our approach is the following problem:

Theorem 2.14 ([2, Theorem 7.1]). Let X be a real Banach space and let
Φ,Ψ : X → R be two continuously Gâteaux differentiable functions with Φ
bounded from below. Assume that there is r ∈ ]infXΦ, supXΨ[ such that

φ(r) < ρ(r),

where

φ(r) := inf
v∈Φ−1(]−∞,r[)

supu∈Φ−1(]−∞,r[)Ψ(u)−Ψ(v)

r − Φ(v)
,

and

ρ(r) := sup
v∈Φ−1(]r,∞[)

Ψ(v)− supu∈Φ−1(]−∞,r[)Ψ(u)

Φ(v)− r
.

and for each λ ∈
]

1

ρ(r)
,

1

φ(r)

[
the function Iλ = Φ − λΨ is bounded from

below and satisfies (PS)-condition.

Then, for each λ ∈
]

1

ρ(r)
,

1

φ(r)

[
the function Iλ admits at least three critical

points.

Remark 2.15 ([2]). If we assume that Φ(0) = Ψ(0) = 0 and there are r > 0
and u ∈ X, with Φ(u) > r, such that

supu∈Φ−1(]−∞,r[)Ψ(u)

r
<

Ψ(u)

Φ(u)
,

then one has φ(r) < ρ(r) and, in addition,]
Φ(u)

Ψ(u)
,

r

supu∈Φ−1(]−∞,r[)Ψ(u)

[
.

Proposition 2.16 ([2, Proposition 2.2]). Let X be a reflexive real Banach
space; Φ : X → R be a continuously Gâteaux differentiable function whose
Gâteaux derivative admits a continuous inverse on X∗, and Ψ : X → R be
a continuously Gâteaux differentiable function whose Gâteaux derivative is
compact. Assume that the function Φ−Ψ is coercive.
Then, for all r1, r2 ∈ [−∞,+∞], with r1 < r2, the function Φ−Ψ satisfies

the [r1](PS)[r2]-condition.

Theorem 2.17. Assume that c be a positive constants with∫
Ω sup|t|≤c F (x, t)dx

r
<

∫
Ω F (x, δ)dx

ζcp
+
+

, (2.22)
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and

0 < r < h−min {k1, . . . , kN} δp
−
−

p++
meas(Ω) (2.23)

Then, for each parameter λ belonging to

Λ(r,δ) := (2.24)]
ζcp

+
+∫

Ω F (x, δ)dx
,

r∫
Ω sup|t|≤c F (x, t)dt

[
,

the problem (1.1) possesses at least three distinct weak solutions in W 1,−→p (.)(Ω).

Proof. Our aim is to apply Theorem 2.14 to our problem. To this end, let
Φ, Ψ be the functionals defined in (2.15), (2.16).

Then Ψ′ : W 1,−→p (.)(Ω) →
(
W 1,−→p (.)(Ω)

)∗
is a compact operator. On the

other hand the fact that W 1,−→p (.)(Ω) is compactly embedded into C0(Ω)

implies that the operator Ψ′ : W 1,−→p (.)(Ω) →
(
W 1,−→p (.)(Ω)

)∗
is compact.

Furthermore, according to Lemma 2.8 and 2.9, Φ is bounded from below
and Φ− λΨ is coercive.
So the functionals Φ,Ψ satisfy in all regularity assumptions requested in
Theorem 2.14, (we apply Proposition 2.16 and do not require (PS)-condition
).
Here and in the sequel we have Φ(0) = Ψ(0) = 0 and Φ(u) ≥ 0 for every
u ∈ X. In the following, our aim is to verify condition (2.22). Put v := δ ∈
W 1,−→p (.)(Ω) with δ > 1, we have

h−min {k1, . . . , kN} δp
−
−

p++
meas(Ω) ≤ Φ(v) ≤ ζ,

and

Ψ(v) =

∫
Ω
F (x, δ)dx.

So, r < Φ(v). Moreover, for all u ∈ W 1,−→p (.)(Ω) such that
u ∈ Φ−1 (]−∞, r[), taking (2.6) into account, one has |u(x)| < c for all x ∈ Ω,
from which it follows

sup
u∈Φ−1(]−∞,r[)

Ψ(u) = sup
u∈Φ−1(]−∞,r[)

∫
Ω
F (x, u(x))dx ≤

∫
Ω
sup
|t|≤c

F (x, t)dx,

and
supu∈Φ−1(]−∞,r[)Ψ(u)

r
≤

∫
Ω sup|t|≤c F (x, t)dx

r
. (2.25)

Moreover, one has

Ψ(v)

Φ(v)
≥

∫
Ω F (x, δ)dx

ζcp
+
+

. (2.26)
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From (2.22) it follows that

supu∈Φ−1(]−∞,r[)Ψ(u)

r
<

Ψ(v)

Φ(v)
. (2.27)

Now, we observe that

φ(r) = inf
v∈Φ−1(]−∞,r[)

supu∈Φ−1(]−∞,r[)Ψ(u)−Ψ(v)

r − Φ(v)

≤
supu∈Φ−1(]−∞,r[)Ψ(u)

r
,

and

ρ(r) = sup
v∈Φ−1(]r,∞[)

Ψ(v)− supu∈Φ−1(]−∞,r])Ψ(u)

Φ(v)− r

≥
Ψ(v)− supu∈Φ−1(]−∞,r])Ψ(u)

Φ(v)− r

≥
Ψ(v)− r

Ψ(v)

Φ(v)

Φ(v)− r

=
Ψ(v)

Φ(v)
.

Hence, φ(r) ≤
supu∈Φ−1(]−∞,r])Ψ(u)

r
<

Ψ(v)

Φ(v)
≤ ρ(r).

So, all conditions that we need is verified. Since all the assumptions of
Theorem 2.14 are satisfied, then, for each

λ ∈ Λ(r,δ) =

]
ζcp

+
+∫

Ω F (x, δ)dx
,

r∫
Ω sup|t|≤c F (x, t)dt

[
,

the functional Iλ has at least three distinct critical points that are weak
solutions of the problem(1.1). The proof is complete. □

Example 2.18. Define g : R −→ R as follows

g(t) :=


0 t < 0,

tp
+
+ 0 ≤ t ≤ 1,

tξ(x) t > 1,

where ξ(x) ∈
]
0, p−− − 1

[
. Further, letm : Ω −→ R be a bounded measurable

and positive function. From theorem 2.17, for each

λ >
meas(Ω)

∥m∥L1(Ω)
inf

δ>0,G(δ)>0

|δ|p
+
+

p−−G(δ)
,
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where G(δ) :=
∫ δ
0 g(t)dt, the following problem

−
N∑
i=1

∂xi(|∂xiu|pi(x)−2∂xiu) +
∑N

i=1 |u|pi(x)−2u = λm(x)g(u),

∂u

∂ν
= 0,

x ∈ Ω,
x ∈ ∂Ω.

possesses at least three weak solutions in W 1,−→p (.)(Ω).
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