

SOME FIXED POINT THEOREMS FOR Γ**-WARDOWSKI-GERAGHTY CONTRACTIONS IN** Γ**-B-METRIC SPACES**

BABAK MOHAMMADI, ABDOLLAH DINMOHAMMADI, VAHID PARVANEH*[∗]*

Department of Mathematics, Marand Branch, Islamic Azad University, Marand, Iran babakmohammadi28@yahoo.com

Department of Mathematics, Buein Zahra Thechnical University, Buein Zahra, Qazvin, Iran

dinmohammadi@bzte.ac.ir Department of Mathematics, Gilan-E-Gharb Branch, Islamic Azad University, Gilan-E-Gharb, Iran zam.dalahoo@gmail.com

Abstract. Motivated by Wardowski [Fixed Point Theory Appl. 2012:94, 2012] we introduce and study a new contraction and a new generalized *b*-metric space called *α*-*β*-*F*-Γ contraction and Γ-b-metric space respectively to prove a fixed point result as a generalization of the Banach contraction principle. Moreover, we discuss some illustrative contractions to highlight the realized improvements.

1. Introduction

After Bakhtin [[4](#page-4-0)] and Czerwik [[5](#page-4-1), [6](#page-4-2)] introduced *b*-metric spaces, many authors attempted to generalize this practical concept. Kamran and others [[7\]](#page-4-3) presented controlled *b*-metric spaces. Following that, double-controlled *b*-metric spaces were introduced. Generalized *b*-metric spaces were also introduced by Parvaneh and Ghoncheh [[9\]](#page-4-4). They used a function instead of the coefficient *s*, which was always above the half-tone of the first and third

²⁰²⁰ *Mathematics Subject Classification. Primary 47B35; Secondary 30H05*

Key words and phrases. fixed point, generalized *b*-metric space, generalized contraction. *[∗]* Speaker.

quarters and did not coincide with its inverse except at zero. This is a major limitation. In this article, by removing this limitation, we present a new category of generalized *b*-metric spaces, which will certainly be of interest to many researchers in the field of fixed point theory.

The most well-known conclusion in fixed point theory, the Banach contractive principle or Banach fixed point theorem, states that every contractive mapping in a complete metric space has a unique fixed point. By applying various types of contractive conditions in different spaces, this result can be generalized in a huge number of ways. A fixed point conclusion was demonstrated recently as a generalization of the Banach contraction principle by Wardowski [[1](#page-4-5)], who also established a new contraction known as the F-contraction.

One of the interesting results which also generalizes the Banach contraction principle was given by Samet *et al.* [\[2\]](#page-4-6) by defining α - ψ -contractive and *α*-admissible mappings.

Definition 1.1. [\[2\]](#page-4-6) Let *T* be a self-mapping on a set *X* and let $\alpha: X \times X \rightarrow$ $[0, \infty)$ be a function. We say that *T* is an α -admissible mapping if

$$
x, y \in X
$$
, $\alpha(x, y) \ge 1 \implies \alpha(Tx, Ty) \ge 1$.

Definition 1.2. [[3](#page-4-7)] Let $f: X \to X$ and $\alpha: X \times X \to [0, +\infty)$. We say that f is a triangular α -admissible mapping if

(T1) $\alpha(x, y) \ge 1$ implies $\alpha(fx, fy) \ge 1$, $x, y \in X$; $\left(\text{T2}\right) \begin{cases} \alpha(x,z) \geq 1 \\ \end{cases}$ $\alpha(z, y) \geq 1$ $implies \alpha(x, y) \geq 1, \quad x, y, z \in X.$

Lemma 1.[3](#page-4-7). [3] *Let* f *be a triangular* α *-admissible mapping. Assume that there exists* $x_0 \in X$ *such that* $\alpha(x_0, fx_0) \geq 1$ *. Define sequence* $\{x_n\}$ *by* $x_n = f^n x_0$. Then

 $a(x_m, x_n) \geq 1$ *for all* $m, n \in \mathbb{N}$ *with* $m < n$.

Definition 1.4. [\[5\]](#page-4-1) Let *X* be a (nonempty) set and $s \geq 1$ be a given real number. A function $d: X \times X \to [0, \infty)$ is a *b*-metric if, for all $x, y, z \in X$,

- $(b_1) d(x, y) = 0$ iff $x = y$,
- $(b_2) d(x, y) = d(y, x),$
- (b_3) $d(x, z) \leq s[d(x, y) + d(y, z)].$

In this case, the pair (X, d) is called a *b*-metric space.

Substituting the coefficient *s* by a function $\Omega : [0, \infty) \to [0, \infty)$ with some constraints, a two-variable function $\alpha : X \times X \to [0, \infty)$ and two two-variable functions $\alpha_1, \alpha_2 : X \times X \to [0, \infty)$ we have extended *b*-metric spaces, controlled *b*-metric spaces and double controlled *b*-metric spaces, respectively.

Removing some constraints on function Ω we have the following extension of the concept of *b*-metric space.

Definition 1.5. Let *X* be a (nonempty) set and $\Gamma : [0, \infty) \to [0, \infty)$ be a continuous increasing mapping. A function $d : X \times X \to [0, \infty)$ is a Γ-*b*-metric if, for all $x, y, z \in X$,

- $(b_1) d(x, y) = 0$ iff $x = y$,
- (b_2) $d(x, y) = d(y, x),$
- $(b_3) \Gamma[d(x, z)] \leq s \cdot \Gamma[d(x, y) + d(y, z)].$

In this case, the pair (X, d) is called a Γ -*b*-metric space.

Note that a *b*-metric need not be a continuous function. So, we have this fact about Γ-*b*-metric spaces.

Example 1.6. Taking $\Gamma(x) = \arcsin x$, the Γ-triangle inequality will be as follows:

$$
sinh^{-1}[d(x, z)] \le s \cdot sinh^{-1}[d(x, y) + d(y, z)].
$$

So,

$$
[d(x,z)] \le \sinh[s \cdot \sinh^{-1}[d(x,y) + d(y,z)]]
$$

=
$$
\frac{e^{2s \cdot \ln[[d(x,y) + d(y,z)] + \sqrt{[d(x,y) + d(y,z)]^2 + 1}]} - 1}{2e^{s \cdot \ln[[d(x,y) + d(y,z)] + \sqrt{[d(x,y) + d(y,z)]^2 + 1}]}}
$$

=
$$
\frac{[d(x,y) + d(y,z)] + \sqrt{[d(x,y) + d(y,z)]^2 + 1}}{2\left[[d(x,y) + d(y,z)] + \sqrt{[d(x,y) + d(y,z)]^2 + 1} \right]^s}.
$$

Lemma 1.7. *Let* (X,d) *be a* Γ *-b-metric, and suppose that* $\{x_n\}$ *and* $\{y_n\}$ *are* Γ*-b-convergent to x and y, respectively. Then we have*

$$
\frac{1}{s^2} \Gamma[d(x, y)] \le \Gamma[\liminf_{n \to \infty} d(x_n, y_n)] \le \Gamma[\limsup_{n \to \infty} d(x_n, y_n)] \le s^2 \cdot \Gamma d(x, y).
$$

In particular, if $x = y$ *, then we have* $\lim_{n \to \infty} d(x_n, y_n) = 0$ *. Moreover, for each* $z \in X$ *, we have,*

$$
\frac{1}{s}\Gamma[d(x,z)] \le \liminf_{n\to\infty} \Gamma[d(x_n,z)] \le \limsup_{n\to\infty} \Gamma[d(x_n,z)] \le s \cdot \Gamma[d(x,z)].
$$

In this paper, we introduce the concept of α -*β*-*F*- Γ -contractions and obtain some fixed point results in Γ-*b*-metric spaces. Our results extend those of Wardowski and several other authors.

2. FIXED POINT RESULTS FOR α -ADMISSIBLE β -*FG*-CONTRACTIONS

Let $s > 1$ be a fixed real number. We will consider the following classes of functions.

 Δ_F will denote the set of all functions $F : \mathbb{R}^+ \to \mathbb{R}$ such that

 (Δ_1) *F* is continuous and strictly increasing;

 (Δ_2) for each sequence $\{t_n\} \subseteq R^+$, $\lim_{n \to \infty} t_n = 0$ if and only if $\lim_{n \to \infty} F(t_n) =$ *−∞*.

 $\Delta_{F,\beta}$ will denote the set of pairs (F,β) , where $F : \mathbb{R}^+ \to \mathbb{R}$ and β : $[0, \infty) \rightarrow [0, 1)$, such that

 $(∆₃)$ for each sequence $\{t_n\} ⊆ R^+$, lim sup *n→∞* $F(t_n) \geq 0$ if and only if $\limsup t_n \geq 1.$

(Δ_4) for each sequence $\{t_n\}$ ⊆ [0, ∞), lim sup $\lim_{n\to\infty}$ *b*₍*t*_{*n*}) = 1 implies $\lim_{n\to\infty}$ *t*_{*n*} = 0;

$$
(\Delta_5)
$$
 for each sequence $\{t_n\} \subseteq R^+$, $\sum_{n=1}^{\infty} F(\beta(t_n)) = -\infty$;

Definition 2.1. Let (X, d) be a Γ -*b*-metric space and let *T* be a self-mapping on *X*. Also suppose that $\alpha: X \times X \to [0, \infty)$ be a function. We say that *T* is an α - β -*F*- Γ -contraction if for all $x, y \in X$ with $1 \leq \alpha(x, y)$ and $d(Tx,Ty) > 0$ we have

$$
F(s\Gamma[d(Tx,Ty)]) \le F(\Gamma[M_{s,\Gamma}(x,y)]) + F(\beta(M_{s,\Gamma}(x,y))), \qquad (2.1)
$$

where $F \in \Delta_F$, $(F, \beta) \in \Delta_{F, \beta}$ and

$$
M_{s,\Gamma}(x,y) = \max\left\{d(x,y), d(x,Tx), d(y,Ty), \frac{\Gamma^{-1}[\frac{d(x,Ty)+d(y,Tx)}{s}]}{2}\right\}.
$$
 (2.2)

Now we state and prove our main result of this section.

Theorem 2.2. Let (X, d) be a complete Γ -b-metric space. Let $T : X \to X$ *be a self-mapping satisfying the following assertions:*

- (i) *T is a triangular* α -*admissible mapping*;
- (ii) T *is an* α - β - F - Γ -contraction;
- (iii) *there exists* $x_0 \in X$ *such that* $\alpha(x_0, Tx_0) \geq 1$;
- (iv) T *is* α -continuous.

Then T has a fixed point. Moreover, T has a unique fixed point if $\alpha(x, y) \geq 1$ *for all* $x, y \in Fix(T)$.

Taking $F(t) = \ln t$, $\beta(x) = k$ where $k \in (0,1)$, and putting $\Gamma(x) = x^2$ in the above theorem, we obtain a generalization of the Banach contraction principle in the setup of Γ-b-metric spaces.

Corollary 2.3. Let (X, d) be a complete Γ -*b*-metric space. Let T be a self*mapping on X and* α : $X \times X \rightarrow [0, \infty)$ *be a function such that the mapping T satisfies the following assertions:*

- (i) T *is a triangular* α -*admissible mapping*;
- (ii)

$$
d(Tx,Ty) < \sqrt{k/s} (M_{s,\Gamma}(x,y)),
$$

for all $x, y \in X$ *with* $1 \leq \alpha(x, y)$ *and* $d(Tx, Ty) > 0$;

- (iii) *there exists* $x_0 \in X$ *such that* $\alpha(x_0, Tx_0) \geq 1$;
- (iv) *T is α-continuous.*

Then T has a fixed point. Moreover, T has a unique fixed point when $\alpha(x, y) \geq 1$ *for all* $x, y \in Fix(T)$ *.*

In the following theorem we replace the α -continuity of T by another condition (iv*′*).

Theorem 2.4. *Let* (X, d) *be a complete* Γ *-b-metric space. Let* $T : X \to X$ *be a self-mapping and suppose that* α : $X \times X \rightarrow [0, \infty)$ *be a function such that:*

- (i) *T is a rectangular* α -*admissible mapping*;
- (ii) T *is an* α - β - F - Γ -contraction;
- (iii) *there exists* $x_0 \in X$ *such that* $\alpha(x_0, Tx_0) \geq 1$;
- (iv) *if* $\{x_n\}$ *be a sequence in X such that* $\alpha(x_n, x_{n+1}) \geq 1$ *with* $x_n \to x$ $as n \to \infty$, then $1 \leq \alpha(Tx_n, Tx)$ holds for all $n \in \mathbb{N}$.

Then T has a fixed point. Moreover, T has a unique fixed point whenever $\alpha(x, y) \geq 1$ *for all* $x, y \in Fix(T)$ *.*

REFERENCES

- 1. D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012, 2012:94.
- 2. B. Samet, C. Vetro and P. Vetro, Fixed point theorem for *α*-*ψ*-contractive type mappings, Nonlinear Anal., 75 (2012) 2154–2165.
- 3. E. Karapınar, P. Kumam and P. Salimi, On *α*-*ψ*-Meir-Keeler contractive mappings, Fixed Point Theory Appl., 2013, 2013:94.
- 4. I. A. Bakhtin, *The contraction principle in quasimetric spaces* [in Russian], Funk. An. Ulianowsk Fos. Ped. Inst. 30 (1989), 26–37.
- 5. S. Czerwik, *Contraction mappings in b-metric spaces*, Acta Math. Inf. Univ. Ostrav., 1 (1993), 5–11.
- 6. S. Czerwik, *Nonlinear set-valued contraction mappings in b-metric spaces*, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 263–276.
- 7. Mlaiki, N.; Aydi, H.; Souayah, N.; Abdeljawad, T. Controlled metric type spaces and the related contraction principle. Mathematics 2018, 6, 194. [Google Scholar] [CrossRef]
- 8. Abdeljawad T, Mlaiki N, Aydi H, Souayah N. Double Controlled Metric Type Spaces and Some Fixed Point Results. Mathematics. 2018; 6(12):320. https://doi.org/10.3390/math6120320
- 9. Parvaneh, V., Ghoncheh, S.J.H.: Fixed points of (*ψ*,*φ*)Ω-contractive mappings in ordered *P*-metric spaces. Global Anal. Discrete Math. 4(1), 15–29 (2020)