

SOME FIXED POINT THEOREMS FOR Γ -WARDOWSKI-GERAGHTY CONTRACTIONS IN Γ -B-METRIC SPACES

BABAK MOHAMMADI, ABDOLLAH DINMOHAMMADI, VAHID PARVANEH*

Department of Mathematics, Marand Branch, Islamic Azad University, Marand, Iran babakmohammadi28@yahoo.com

Department of Mathematics, Buein Zahra Thechnical University, Buein Zahra, Qazvin, Iran

dinmohammadi@bzte.ac.ir Department of Mathematics, Gilan-E-Gharb Branch, Islamic Azad University, Gilan-E-Gharb, Iran zam.dalahoo@gmail.com

ABSTRACT. Motivated by Wardowski [Fixed Point Theory Appl. 2012:94, 2012] we introduce and study a new contraction and a new generalized *b*-metric space called α - β -F- Γ contraction and Γ -b-metric space respectively to prove a fixed point result as a generalization of the Banach contraction principle. Moreover, we discuss some illustrative contractions to highlight the realized improvements.

1. INTRODUCTION

After Bakhtin [4] and Czerwik [5, 6] introduced *b*-metric spaces, many authors attempted to generalize this practical concept. Kamran and others [7] presented controlled *b*-metric spaces. Following that, double-controlled *b*-metric spaces were introduced. Generalized *b*-metric spaces were also introduced by Parvaneh and Ghoncheh [9]. They used a function instead of the coefficient *s*, which was always above the half-tone of the first and third

²⁰²⁰ Mathematics Subject Classification. Primary 47B35; Secondary 30H05

Key words and phrases. fixed point, generalized b-metric space, generalized contraction. * Speaker.

quarters and did not coincide with its inverse except at zero. This is a major limitation. In this article, by removing this limitation, we present a new category of generalized *b*-metric spaces, which will certainly be of interest to many researchers in the field of fixed point theory.

The most well-known conclusion in fixed point theory, the Banach contractive principle or Banach fixed point theorem, states that every contractive mapping in a complete metric space has a unique fixed point. By applying various types of contractive conditions in different spaces, this result can be generalized in a huge number of ways. A fixed point conclusion was demonstrated recently as a generalization of the Banach contraction principle by Wardowski [1], who also established a new contraction known as the F-contraction.

One of the interesting results which also generalizes the Banach contraction principle was given by Samet *et al.* [2] by defining α - ψ -contractive and α -admissible mappings.

Definition 1.1. [2] Let T be a self-mapping on a set X and let $\alpha : X \times X \rightarrow [0, \infty)$ be a function. We say that T is an α -admissible mapping if

$$x, y \in X, \quad \alpha(x, y) \ge 1 \implies \alpha(Tx, Ty) \ge 1.$$

Definition 1.2. [3] Let $f : X \to X$ and $\alpha : X \times X \to [0, +\infty)$. We say that f is a triangular α -admissible mapping if

(T1) $\alpha(x, y) \ge 1$ implies $\alpha(fx, fy) \ge 1$, $x, y \in X$; (T2) $\begin{cases} \alpha(x, z) \ge 1\\ \alpha(z, y) \ge 1 \end{cases}$ implies $\alpha(x, y) \ge 1$, $x, y, z \in X$.

Lemma 1.3. [3] Let f be a triangular α -admissible mapping. Assume that there exists $x_0 \in X$ such that $\alpha(x_0, fx_0) \geq 1$. Define sequence $\{x_n\}$ by $x_n = f^n x_0$. Then

 $\alpha(x_m, x_n) \ge 1$ for all $m, n \in \mathbb{N}$ with m < n.

Definition 1.4. [5] Let X be a (nonempty) set and $s \ge 1$ be a given real number. A function $d: X \times X \to [0, \infty)$ is a *b*-metric if, for all $x, y, z \in X$,

- $(b_1) d(x,y) = 0$ iff x = y,
- $(b_2) \ d(x,y) = d(y,x),$
- (b₃) $d(x,z) \le s[d(x,y) + d(y,z)].$

In this case, the pair (X, d) is called a *b*-metric space.

Substituting the coefficient s by a function $\Omega : [0, \infty) \to [0, \infty)$ with some constraints, a two-variable function $\alpha : X \times X \to [0, \infty)$ and two two-variable functions $\alpha_1, \alpha_2 : X \times X \to [0, \infty)$ we have extended b-metric spaces, controlled b-metric spaces and double controlled b-metric spaces, respectively.

Removing some constraints on function Ω we have the following extension of the concept of *b*-metric space. **Definition 1.5.** Let X be a (nonempty) set and $\Gamma : [0, \infty) \to [0, \infty)$ be a continuous increasing mapping. A function $d : X \times X \to [0, \infty)$ is a Γ -b-metric if, for all $x, y, z \in X$,

- $(b_1) \ d(x,y) = 0 \text{ iff } x = y,$
- $(b_2) \ d(x,y) = d(y,x),$
- $(b_3) \ \Gamma[d(x,z)] \le s \cdot \Gamma[d(x,y) + d(y,z)].$

In this case, the pair (X, d) is called a Γ -b-metric space.

Note that a *b*-metric need not be a continuous function. So, we have this fact about Γ -*b*-metric spaces.

Example 1.6. Taking $\Gamma(x) = \operatorname{arcsinh} x$, the Γ -triangle inequality will be as follows:

$$\sinh^{-1}[d(x,z)] \le s \cdot \sinh^{-1}[d(x,y) + d(y,z)].$$

So,

$$\begin{aligned} [d(x,z)] &\leq \sinh[s \cdot \sinh^{-1}[d(x,y) + d(y,z)]] \\ &= \frac{e^{2s \cdot \ln[[d(x,y) + d(y,z)] + \sqrt{[d(x,y) + d(y,z)]^2 + 1]} - 1}}{2e^{s \cdot \ln[[d(x,y) + d(y,z)] + \sqrt{[d(x,y) + d(y,z)]^2 + 1}]}} \\ &= \frac{\left[[d(x,y) + d(y,z)] + \sqrt{[d(x,y) + d(y,z)]^2 + 1} \right]^{2s} - 1}{2\left[[d(x,y) + d(y,z)] + \sqrt{[d(x,y) + d(y,z)]^2 + 1} \right]^s}. \end{aligned}$$

Lemma 1.7. Let (X, d) be a Γ -b-metric, and suppose that $\{x_n\}$ and $\{y_n\}$ are Γ -b-convergent to x and y, respectively. Then we have

$$\frac{1}{s^2}\Gamma[d(x,y)] \le \Gamma[\liminf_{n \to \infty} d(x_n, y_n)] \le \Gamma[\limsup_{n \to \infty} d(x_n, y_n)] \le s^2 \cdot \Gamma d(x, y).$$

In particular, if x = y, then we have $\lim_{n \to \infty} d(x_n, y_n) = 0$. Moreover, for each $z \in X$, we have,

$$\frac{1}{s}\Gamma[d(x,z)] \le \liminf_{n \to \infty} \Gamma[d(x_n,z)] \le \limsup_{n \to \infty} \Gamma[d(x_n,z)] \le s \cdot \Gamma[d(x,z)].$$

In this paper, we introduce the concept of α - β -F- Γ -contractions and obtain some fixed point results in Γ -*b*-metric spaces. Our results extend those of Wardowski and several other authors.

2. Fixed point results for α -admissible β -FG-contractions

Let s > 1 be a fixed real number. We will consider the following classes of functions.

 Δ_F will denote the set of all functions $F : \mathbb{R}^+ \to \mathbb{R}$ such that

 (Δ_1) F is continuous and strictly increasing;

(Δ_2) for each sequence $\{t_n\} \subseteq R^+$, $\lim_{n \to \infty} t_n = 0$ if and only if $\lim_{n \to \infty} F(t_n) = -\infty$.

 $\Delta_{F,\beta}$ will denote the set of pairs (F,β) , where $F : \mathbb{R}^+ \to \mathbb{R}$ and $\beta : [0,\infty) \to [0,1)$, such that

 (Δ_3) for each sequence $\{t_n\} \subseteq R^+$, $\limsup_{n \to \infty} F(t_n) \ge 0$ if and only if $\limsup_{n \to \infty} t_n \ge 1$.

 $(\Delta_4) \text{ for each sequence } \{t_n\} \subseteq [0,\infty), \limsup_{n \to \infty} \beta(t_n) = 1 \text{ implies } \lim_{n \to \infty} t_n = 0;$

$$(\Delta_5)$$
 for each sequence $\{t_n\} \subseteq R^+$, $\sum_{n=1}^{\infty} F(\beta(t_n)) = -\infty;$

Definition 2.1. Let (X, d) be a Γ -*b*-metric space and let T be a self-mapping on X. Also suppose that $\alpha : X \times X \to [0, \infty)$ be a function. We say that T is an α - β -F- Γ -contraction if for all $x, y \in X$ with $1 \leq \alpha(x, y)$ and d(Tx, Ty) > 0 we have

$$F(s\Gamma[d(Tx,Ty)]) \le F(\Gamma[M_{s,\Gamma}(x,y)]) + F(\beta(M_{s,\Gamma}(x,y))), \qquad (2.1)$$

where $F \in \Delta_F$, $(F, \beta) \in \Delta_{F,\beta}$ and

$$M_{s,\Gamma}(x,y) = \max\left\{ d(x,y), d(x,Tx), d(y,Ty), \frac{\Gamma^{-1}[\frac{d(x,Ty)+d(y,Tx)}{s}]}{2} \right\}.$$
 (2.2)

Now we state and prove our main result of this section.

Theorem 2.2. Let (X, d) be a complete Γ -b-metric space. Let $T : X \to X$ be a self-mapping satisfying the following assertions:

- (i) T is a triangular α -admissible mapping;
- (ii) T is an α - β -F- Γ -contraction;
- (iii) there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1$;
- (iv) T is α -continuous.

Then T has a fixed point. Moreover, T has a unique fixed point if $\alpha(x, y) \ge 1$ for all $x, y \in Fix(T)$.

Taking $F(t) = \ln t$, $\beta(x) = k$ where $k \in (0, 1)$, and putting $\Gamma(x) = x^2$ in the above theorem, we obtain a generalization of the Banach contraction principle in the setup of Γ -b-metric spaces.

Corollary 2.3. Let (X, d) be a complete Γ -b-metric space. Let T be a selfmapping on X and $\alpha : X \times X \to [0, \infty)$ be a function such that the mapping T satisfies the following assertions:

- (i) T is a triangular α -admissible mapping;
- (ii)

$$d(Tx, Ty) < \sqrt{k/s(M_{s,\Gamma}(x, y))},$$

for all $x, y \in X$ with $1 \leq \alpha(x, y)$ and d(Tx, Ty) > 0;

- (iii) there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1$;
- (iv) T is α -continuous.

Then T has a fixed point. Moreover, T has a unique fixed point when $\alpha(x,y) \ge 1$ for all $x, y \in Fix(T)$.

In the following theorem we replace the α -continuity of T by another condition (iv').

Theorem 2.4. Let (X, d) be a complete Γ -b-metric space. Let $T : X \to X$ be a self-mapping and suppose that $\alpha : X \times X \to [0, \infty)$ be a function such that:

- (i) T is a rectangular α -admissible mapping;
- (ii) T is an α - β -F- Γ -contraction;
- (iii) there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1$;
- (iv') if $\{x_n\}$ be a sequence in X such that $\alpha(x_n, x_{n+1}) \ge 1$ with $x_n \to x$ as $n \to \infty$, then $1 \le \alpha(Tx_n, Tx)$ holds for all $n \in \mathbb{N}$.

Then T has a fixed point. Moreover, T has a unique fixed point whenever $\alpha(x,y) \ge 1$ for all $x, y \in Fix(T)$.

References

- 1. D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012, 2012:94.
- 2. B. Samet, C. Vetro and P. Vetro, Fixed point theorem for α - ψ -contractive type mappings, Nonlinear Anal., 75 (2012) 2154–2165.
- E. Karapınar, P. Kumam and P. Salimi, On α-ψ-Meir-Keeler contractive mappings, Fixed Point Theory Appl., 2013, 2013:94.
- I. A. Bakhtin, The contraction principle in quasimetric spaces [in Russian], Funk. An. Ulianowsk Fos. Ped. Inst. 30 (1989), 26–37.
- 5. S. Czerwik, *Contraction mappings in b-metric spaces*, Acta Math. Inf. Univ. Ostrav., 1 (1993), 5–11.
- S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 263–276.
- 7. Mlaiki, N.; Aydi, H.; Souayah, N.; Abdeljawad, T. Controlled metric type spaces and the related contraction principle. Mathematics 2018, 6, 194. [Google Scholar] [CrossRef]
- Abdeljawad T, Mlaiki N, Aydi H, Souayah N. Double Controlled Metric Type Spaces and Some Fixed Point Results. Mathematics. 2018; 6(12):320. https://doi.org/10.3390/math6120320
- 9. Parvaneh, V., Ghoncheh, S.J.H.: Fixed points of $(\psi, \varphi)\Omega$ -contractive mappings in ordered *P*-metric spaces. Global Anal. Discrete Math. 4(1), 15–29 (2020)