

MINIMAL INVARIANT PAIRS OF CYCLIC (NONCYCLIC) RELATIVELY NONEXPANSIVE MAPPINGS

MOOSA GABELEH*

Department of Mathematics, Ayatollah Boroujerdi University, Boroujerd, Iran gab.moo@gmail.com, Gabeleh@abru.ac.ir

ABSTRACT. We consider the class of cyclic (noncyclic) relatively nonexpansive mappings and study the structure of minimal invariant pairs in (strictly convex) Banach spaces. Then we conclude a well-known best proximity point (pair) theorem for such class of mappings.

1. INTRODUCTION

Let X be a Banach space and $C \subseteq X$. A mapping $T : C \to C$ is said to be *nonexpansive* if $||Tx - Ty|| \leq ||x - y||$ for all $x, y \in C$. It is well known that if C is a nonempty, compact and convex subset of a Banach space X, then any nonexpansive mapping of C into C has a fixed point.

In the case that C is weakly compact and convex subset of a Banach space X, then the nonexpansive mapping T may not have a fixed point. If C possesses normal structure, then the existence of a fixed point is guaranteed by Kirk's fixed point theorem ([5]). We mention that every bounded, closed and convex subset of a uniformly convex Banach space X has normal structure.

Let A and B be two nonempty subsets of a normed linear space X. A mapping $T: A \cup B \to A \cup B$ is said to be *cyclic (noncyclic)* provided that $T(A) \subseteq B, T(B) \subseteq A$ $(T(A) \subseteq A, T(B) \subseteq B)$.

²⁰²⁰ Mathematics Subject Classification. Primary 47H09; Secondary 46B20

Key words and phrases. Best proximity point (pair); Cyclic (noncyclic) relatively nonexpansive mapping; Uniformly convex Banach space.

^{*} Speaker.

In the case that T is cyclic a point $x^* \in A \cup B$ is called a *best proximity* point of T whenever

$$||x^{*} - Tx^{*}|| = \operatorname{dist}(A, B) := \inf\{||x - y|| \colon x \in A, \ y \in B\}.$$

Moreover, a point $(p,q) \in A \times B$ is said to be a *best proximity pair* of the noncyclic mapping T if

$$p = Tp, \quad q = Tq, \quad ||p - q|| = \operatorname{dist}(A, B).$$

A mapping $T: A \cup B \to A \cup B$ is said to be *relatively nonexpansive* if $||Tx - Ty|| \le ||x - y||$ whenever $x \in A$ and $y \in B$.

To describe our results, we need some definitions and notations. We shall say that a pair (A, B) of subsets of a Banach space X satisfies a property if both A and B satisfy that property. For example, (A, B) is convex if and only if both A and B are convex; $(A, B) \subseteq (C, D) \Leftrightarrow A \subseteq C$, and $B \subseteq D$. We shall also adopt the notation

$$\delta_x(A) = \sup\{d(x, y) \colon y \in A\} \text{ for all } x \in X,$$

$$\delta(A, B) = \sup\{\delta_x(B) \colon x \in A\}.$$

The closed and convex hull of a set A will be denoted by $\overline{\text{con}}(A)$.

Definition 1.1. A Banach space X is said to be

(i) uniformly convex if there exists a strictly increasing function $\delta : (0, 2] \rightarrow [0, 1]$ such that the following implication holds for all $x, y, p \in X, R > 0$ and $r \in [0, 2R]$:

$$\begin{cases} \|x-p\| \le R, \\ \|y-p\| \le R, \\ \|x-y\| \ge r \end{cases} \Rightarrow \|\frac{x+y}{2} - p\| \le (1 - \delta(\frac{r}{R}))R; \end{cases}$$

(*ii*) strictly convex if the following implication holds for all $x, y, p \in X$ and R > 0:

$$\begin{cases} \|x-p\| \le R, \\ \|y-p\| \le R, \\ x \ne y \end{cases} \Rightarrow \|\frac{x+y}{2} - p\| < R. \end{cases}$$

Lemma 1.2. ([1]) Let (K_1, K_2) be a pair of nonempty subsets of a normed linear space X. Then

$$\delta(K_1, K_2) = \delta(\overline{\operatorname{con}}(K_1), \overline{\operatorname{con}}(K_2)).$$

Given (A, B) a pair of nonempty subsets of a Banach space, then its proximal pair is the pair (A_0, B_0) given by

$$A_0 = \{x \in A : ||x - y'|| = \text{dist}(A, B) \text{ for some } y' \in B\},\$$

$$B_0 = \{y \in B : ||x' - y|| = \operatorname{dist}(A, B) \text{ for some } x' \in A\}.$$

Proximal pairs may be empty but, in particular, if A and B are nonempty weakly compact and convex then (A_0, B_0) is a nonempty weakly compact convex pair in X. **Definition 1.3.** Let (A, B) be a nonempty pair in a Banach space X. Then (A, B) is said to be a proximinal pair if $A = A_0$ and $B = B_0$.

Definition 1.4. Let (A, B) be a nonempty pair of sets in a Banach space X. A point p in A (q in B) is said to be a diametral point with respect to B (w.r.t. A) if $\delta_p(B) = \delta(A, B)$ ($\delta_q(A) = \delta(A, B)$). A pair (p, q) in $A \times B$ is diametral if both points p and q are diametral.

2. MINIMAL INVARIANT PAIRS OF RELATIVELY NONEXPANSIVE MAPPINGS

The following lemmas play important roles in our coming discussions.

Lemma 2.1. [2] Let (A, B) be a nonempty weakly compact convex pair of a Banach space X and let $T: A \cup B \to A \cup B$ be a cyclic (noncyclic) relatively nonexpansive mapping. Then there exists $(K_1, K_2) \subseteq (A_0, B_0) \subseteq$ (A, B) which is minimal with respect to being nonempty closed convex and T-invariant pair of subsets of (A, B) such that

$$\operatorname{dist}(K_1, K_2) = \operatorname{dist}(A, B).$$

Moreover, the pair (K_1, K_2) is proximinal.

Notation. Let (A, B) be a nonempty, weakly compact and convex pair in a Banach space X and suppose $T : A \cup B \to A \cup B$ is a cyclic (noncyclic) relatively nonexpansive mapping. By $\mathcal{M}_T(A, B)$ we denote the set of all nonempty, closed, convex, minimal and T-invariant pair $(K_1, K_2) \subseteq (A, B)$ such that dist $(K_1, K_2) = \text{dist}(A, B)$.

Lemma 2.2. (Lemma 3.1 of [3]) Let (A, B) be a nonempty weakly compact convex pair in a Banach space X and $T: A \cup B \to A \cup B$ a cyclic relatively nonexpansive mapping. If $(K_1, K_2) \in \mathcal{M}_T(A, B)$, then each pair $(p, q) \in$ $K_1 \times K_2$ with ||p - q|| = dist(A, B) contains a diametral point (with respect to (K_1, K_2)).

Lemma 2.3. (Lemma 3.8 of [3]) Let (A, B) be a nonempty weakly compact convex pair of a strictly convex Banach space X. Let $T: A \cup B \to A \cup B$ be a noncyclic relatively nonexpansive mapping. If $(K_1, K_2) \in \mathcal{M}_T(A, B)$, then each $(p,q) \in K_1 \times K_2$ with ||p-q|| = dist(A, B) is a diametral pair (with respect to (K_1, K_2)), that is,

$$\delta_p(K_2) = \delta_q(K_1) = \delta(K_1, K_2).$$

3. Best proximity points (pairs)

Definition 3.1. Let (A, B) be a nonempty, weakly compact and convex pair in a Banach space X and $T: A \cup B \to A \cup B$ be a cyclic (noncyclic) relatively nonexpansive mapping. We say that the pair (A, B) has the H-property, if for any $(K_1, K_2) \in \mathcal{M}_T$,

 $\max\{\operatorname{diam}(K_1), \operatorname{diam}(K_2)\} \le \delta(K_1, K_2).$

M. GABELEH*

It was announced in [4] that if (A, B) is a nonempty, bounded, closed and convex pair of subsets of a uniformly convex Banach space X and T : $A \cup B \to A \cup B$ is a cyclic (noncyclic) relatively nonexpansive mapping, then (A, B) has the H-property.

Definition 3.2. Suppose (A, B) is a nonempty, disjoint, weakly compact and convex pair in a Banach space X and $T : A \cup B \to A \cup B$ is a cyclic (noncyclic) relatively nonexpansive mapping such that (A, B) has the Hproperty. Define

$$\omega_T := \inf\{\frac{\max\{\operatorname{diam}(K_1), \operatorname{diam}(K_2)\}}{\delta(K_1, K_2)} : (K_1, K_2) \in \mathcal{M}_T\}.$$

It is clear that $\omega_T \in [0, 1]$.

Proposition 3.3. ([4]) Let (A, B) be a nonempty, disjoint, bounded, closed and convex pair of subsets of a uniformly convex Banach space X and T : $A \cup B \to A \cup B$ be a cyclic (noncyclic) relatively nonexpansive mapping. Then $\omega_T = 0$.

Theorem 3.4. ([4]) Let (A, B) be a nonempty, disjoint, weakly compact and convex pair of subsets of a Banach space X and $T : A \cup B \to A \cup B$ be a cyclic (noncyclic) relatively nonexpansive mapping. If $\omega_T = 0$, then has a best proximity point (pair).

Corollary 3.5. ([2]) Let (A, B) be a nonempty, disjoint, bounded, closed and convex pair of subsets of a uniformly convex Banach space X and T : $A \cup B \to A \cup B$ be a cyclic (noncyclic) relatively nonexpansive mapping. Then T has a best proximity point (pair).

References

- 1. A. Abkar, M. Gabeleh, Proximal quasi-normal structure and a best proximity point theorem, J. Nonlinear Convex Anal., 14 (2013), 653-659.
- A.A. Eldred, W.A. Kirk, and P. Veeramani, Proximal normal structure and relatively nonexpansive mappings, Studia Math., 171 (2005), 283-293.
- R. Espinola, M. Gabeleh, On the structure of minimal sets of relatively nonexpnsive mappings, Numer. Funct. Anal. Optim., 34 (2013), 845-860.
- M. Gabeleh, Remarks on minimal sets for cyclicMappings in uniformly convex Banach spaces, Numer. Funct. Anal. Optim., 38 (2017), 360-375.
- W.A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly, 72 (1965) 1004-1006.

4