

STABILITY RESULTS OF FRACTIONAL DIFFERENTIAL EQUATIONS IN THE HILFER SENSE IN MATRIX-VALUED MENGER SPACES

SAFOURA REZAEI ADERYANI[∗] , REZA SAADATI[∗]

School of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran rsaadati@iust.ac.ir

Abstract. In the present paper, we use some special functions to present the notion of multi-stability and obtain an approximation of fractional differential equations through a fixed point theory. Moreover, some UH stability results for the governing models in different cases are gained.

1. INTRODUCTION

Assume the non homogenous vector-valued fractional differential equation given by

$$
^{\mathcal{H}}\mathbf{D}^{a,\sigma}\Phi(\lambda) = \theta\Phi(\lambda) + \Phi(\lambda)\overline{\theta} + \Psi(\lambda), \quad \Phi(0) = \lambda_0,
$$
\n(1.1)

in which ${}^{\mathcal{H}}\mathbf{D}^{a,\sigma}$ is the Hilfer fractional derivative of order a and parameter σ, and $0 < \lambda < \omega < +\infty$. Assume ζ_n be a matrix of n^2 .

Consider the following cases:

- (1) : $\overline{\theta}$, $\theta = 0_{1 \times 1}$, λ_0 , Φ , $\Psi \in \zeta_1$,
- (2) : $\overline{\theta} = 0_{1 \times 1}, \theta \in \zeta_n, \lambda_0, \Phi, \Psi \in \zeta_{n \times 1},$
- $(3) : \overline{\theta} = 0_{m \times m}, \ \theta \in \zeta_n, \ \lambda_0, \Phi, \Psi \in \zeta_{n \times m},$

²⁰²⁰ Mathematics Subject Classification. Primary 47B35; Secondary 30H05

Key words and phrases. Mittag-Leffler matrix, Matrix valued fractional differential equation, Hilfer deriavative.

[∗] Speaker.

[∗] Speaker.

(4) : $\overline{\theta} \in \zeta_m$, $\theta \in \zeta_n$, λ_0 , Φ , $\Psi \in \zeta_{n \times m}$.

In case (1) , we use some special functions to study a class of matrix-valued random controllers and also to present the notion of multi-stability. Next, we show the equation (1.1) is the multi-stable. In other cases, via the fixed point theory, we study the UH stability for the equation [\(1.1\)](#page-0-0).

2. Preliminaries

Assume $\mathcal{O} = [0, 1]$ and

$$
\mathrm{diag}\zeta_n(\mathcal{O}) = \left\{ \begin{bmatrix} v_1 & & \\ & \ddots & \\ & & v_n \end{bmatrix} = \mathrm{diag}[v_1, \cdots, v_n], v_1, ..., v_n \in \mathcal{O} \right\}.
$$

We denote $v := \text{diag}[v_1, \dots, v_n] \preceq \beta := \text{diag}[\beta_1, \dots, \beta_n]$ if $v_i \leq \beta_i$ for all $1 \leq i \leq n$.

Next, we define generalized t-norm (GTN) on diag $\zeta_n(\mathcal{O})$.

Definition 2.1. A GTN on diag $\zeta_n(\mathcal{O})$ is an operation \circledast : diag $\zeta_n(\mathcal{O})$ × $diag\zeta_n(\mathcal{O}) \rightarrow diag\zeta_n(\mathcal{O})$ satisfying the conditions below:

(1) $(\forall v \in \text{diag}\zeta_n(\mathcal{O}))(v \otimes \mathbf{1}) = v)$ (boundary condition);

(2) $(\forall (v, \beta) \in (\text{diag}\zeta_n(\mathcal{O}))^2)(v \circledast \beta = \beta \circledast v)$ (commutativity);

(3) $(\forall (v, \beta, \gamma) \in (\text{diag}\zeta_n(\mathcal{O})^3)(v \otimes (\beta \otimes \gamma) = (v \otimes \beta) \otimes \gamma)$ (associativity); (4) $(\forall (v, v', \beta, \beta') \in (\text{diag}\zeta_n(\mathcal{O}^4)(v \preceq v' \text{ and } \beta \preceq \beta' \implies v \circledast \beta \preceq v' \circledast \beta')$ (monotonicity).

For any $v, \beta \in \text{diag}\zeta_n(\mathcal{O})$ and any sequences $\{v_k\}$ and $\{\beta_k\}$ converging to v and β , if we get $\lim_k (v_k \otimes \beta_k) = v \otimes \beta$, thus \otimes on $diag\zeta_n(\mathcal{O})$ is continuous.

Presume \mathcal{Z}^+ , the set of matrix distribution functions, including increasing and left continuous maps $\psi : \mathbb{R} \cup \{-\infty, \infty\} \to \text{diag}\zeta_n(\mathcal{O})$ s.t. $\psi_0 = \mathbf{0}$ and $\psi_{+\infty} = 1$. Now $\Delta^+ \subseteq \mathcal{Z}^+$ are all mappings $\psi \in \mathcal{Z}^+$ for which $\ell^- \psi_{\varepsilon} =$ $\lim_{\sigma \to \varepsilon^-} \psi_{\sigma} = 1.$

In \mathcal{Z}^+ , we define " \preceq " as: $\Psi \preceq \psi \iff \Psi_{\varepsilon} \preceq \psi_{\varepsilon}$, $\forall \varepsilon \in \mathbb{R}$. In addition

$$
\nabla_r^j = \begin{cases} \mathbf{0}, & \text{if } r \leq j, \\ \mathbf{1}, & \text{if } r > j \end{cases}
$$

belongs to \mathcal{Z}^+ and for each matrix distribution function $\psi, \psi \preceq \nabla^0$.

Definition 2.2. Assume \circledast be a continuous GTN, \mathcal{J} be a linear space, and $\psi : \mathcal{J} \to \Delta^+$ be a matrix distribution function. The triple $(\mathcal{J}, \psi, \mathcal{F})$ is called a matrix Menger normed space if we get

- (1) $\psi_{\varepsilon}^{j} = \nabla_{\varepsilon}^{0}$ for all $\varepsilon > 0$ if and only if $j = 0$;
- (2) $\psi_{\varepsilon}^{\nu j} = \psi_{\frac{\varepsilon}{|\nu|}}^j$ for any $s \in \mathcal{J}$ and $\nu \in \mathbb{C}$ with $\nu \neq 0$;
- (3) $\psi_{\varepsilon+\varepsilon'}^{j+j'}$ $\psi_{\varepsilon+\varepsilon'}^{j+j'} \succeq \psi_{\varepsilon}^j \circledast \psi_{\varepsilon'}^{j'}$ $j'_{\varepsilon'}$ for any $j, j' \in \mathcal{J}$ and $\varepsilon, \varepsilon' \geq 0$.

A complete matrix Menger normed space is called a matrix Menger Banach space.

For more details, we refer to $[1, 2, 3]$ $[1, 2, 3]$ $[1, 2, 3]$ $[1, 2, 3]$.

3. MULTI-STABILITY FOR (1.1) , WHEN $\overline{\theta}$, $\theta = 0_{1 \times 1}$, λ_0 , Φ , $\Psi \in \zeta_{1.1}$,

Assume the following random controller given by

$$
\Lambda\left(-\frac{|\lambda|^a}{\Theta\varepsilon}\right) = \text{diag}\left[0\mathbb{H}_0\left(-\frac{|\lambda|^a}{\Theta\varepsilon}\right), 0\mathbb{H}_1[e_1; -\frac{|\lambda|^a}{\Theta\varepsilon}], 2\mathbb{H}_1[d_1, d_2; e_1; -\frac{|\lambda|^a}{\Theta\varepsilon}], (3.1) \right]
$$

$$
{}_{1}\mathbb{H}_1[d_1; e_1; -\frac{|\lambda|^a}{\Theta\varepsilon}], s\mathbb{H}_r\left[-\frac{|\lambda|^a}{\Theta\varepsilon}\begin{vmatrix} (d_1, D_1), \dots, (d_s, D_s) \\ (e_1, E_1), \dots, (e_r, E_r) \end{vmatrix}, s\mathbb{H}_r^w\left[-\frac{|\lambda|^a}{\Theta\varepsilon}\begin{vmatrix} (d_j, D_j)_{1,s} \\ (e_j, E_j)_{1,r} \end{vmatrix}\right]\right]
$$

where $\Theta > 0$, $\varepsilon \in (0, \infty)$, $0 < a < 1$, and $_0 \mathbb{H}_0$, $_0 \mathbb{H}_1$, $_1 \mathbb{H}_1$, $_s \mathbb{H}_r$, $_s^v \mathbb{H}_r^w$ are Exponential function, Mittag–Leffler function, Hypergeometric function, Wright function, Fox–Wright function, and Fox's H–function respectively. for more details see [\[4\]](#page-3-3).

Notice that the Fox's H-function is defined by

$$
{}_{s}^{\nu} \mathbb{H}^{w}_{r} \left[X \left| \begin{matrix} (d_{j}, D_{j})_{1,s} \\ (e_{j}, E_{j})_{1,r} \end{matrix} \right| := \frac{1}{2\pi i} \int_{Z} O(Y) X^{Y} dY, \tag{3.2}
$$

where $i^2 = -1$, $X \in \mathbb{C} \backslash \{0\}$, $X^Y = \exp(Y[\log |X| + i \arg(X)])$, $\log |X|$ denotes the natural logarithm of $|X|$ and $arg(X)$ is not necessarily the principal value. For convenience,

$$
O(Y) := \frac{\prod_{j=1}^{v} \Gamma(e_j - E_j Y) \prod_{j=1}^{w} \Gamma(1 - d_j + D_j Y)}{\prod_{j=v+1}^{r} \Gamma(1 - e_j + E_j Y) \prod_{j=w+1}^{s} \Gamma(d_j - D_j Y)},
$$

where an empty product is interpreted as 1, and the integers v, w, s, r satisfy the inequalities $0 \leq w \leq s$ and $1 \leq v \leq r$. Assume the coefficients

$$
D_j > 0
$$
 $(j = 1, ..., s)$ and $E_j > 0$ $(j = 1, ..., r)$,

and the complex parameters

$$
d_j
$$
 $(j = 1, ..., s)$ and e_j $(j = 1, ..., r)$

are constrained such that no poles of integrand in (3.2) coincide, and Z is a suitable contour of the Mellin-Barnes type (in the complex Y -plane) which separates the poles of one product from the others. Further, if we assume

$$
\ell := \sum_{j=1}^{w} D_j - \sum_{j=w+1}^{s} D_j + \sum_{j=1}^{v} E_j - \sum_{j=\mathsf{Q}+1}^{r} E_j > 0,
$$

then the integral in (3.2) converges absolutely and defines the H -function, which is analytic in the sector: $|\arg(X)| < \frac{1}{2}$ $\frac{1}{2}\ell\pi$ and with the point $X =$ 0 being tacitly excluded. Actually, the H –function makes sense and also defines an analytic function of X when either

$$
E := \sum_{j=1}^{s} D_j - \sum_{j=1}^{r} E_j < 0 \quad \text{and} \quad 0 < |X| < \infty,
$$

or

$$
E = 0
$$
 and $0 < |X| < R := \prod_{j=1}^{s} D_j^{-D_j} \prod_{j=1}^{r} E_j^{E_j}$.

Definition 3.1. Equation [\(1.1\)](#page-0-0) has Multi-stability, with respect to $\Lambda(-\frac{|\lambda|^d}{\Theta \varepsilon})$ $\frac{\lambda |\tilde{}}{\Theta \varepsilon}),$ if there is $\hbar > 0$, s.t for all $\Theta > 0$, and all solution Φ to [\(3.3\)](#page-3-4), there is a solution Φ' to [\(1.1\)](#page-0-0), with $\psi_{\varepsilon}^{\Phi-\Phi'} \succeq \Lambda \left(-\frac{|\lambda|^a}{\hbar \Theta^a}\right)$ $\overline{\hbar\Theta\varepsilon}$), where $\varepsilon \in (0,\infty)$.

Theorem 3.2. Let (1.1) , when $\overline{\theta}$, $\theta = 0_{1 \times 1}$, λ_0 , Φ , $\Psi \in \zeta_{1.1}$, also Let

$$
\psi_{\varepsilon}^{\mathcal{H}_{\mathbf{D}^{\sigma,\delta}\Phi(\lambda)-\Psi(\lambda)}} \succeq \Lambda\bigg(-\frac{|\lambda|^a}{\Theta\varepsilon}\bigg). \tag{3.3}
$$

Then [\(1.1\)](#page-0-0) is Multi-stable, with respect to $\Lambda(-\frac{|\lambda|^a}{\Theta_{\epsilon}})$ $\frac{\lambda |^{\alpha}}{\Theta \varepsilon}$).

4. UH STABILITY FOR (1.1) , WHEN $\overline{\theta} = 0_{1 \times 1}$, $\theta \in \zeta_n$, $\lambda_0, \Phi, \Psi \in \zeta_{n,1}$,

Theorem 4.1. If each the eigenvalues of θ satisfy $|\arg(\mu(\theta))| > \frac{a\pi}{2}$ $\frac{2}{2}$. Then, (1.1) is UH stable.

5. UH STABILITY FOR (1.1) , WHEN $\overline{\theta} = 0_{m \times m}$, $\theta \in \zeta_n$, $\lambda_0, \Phi, \Psi \in \zeta_{n,m}$

Theorem 5.1. If any the eigenvalues of θ satisfy $|\arg(\mu(\theta))| > \frac{a\pi}{2}$ $\frac{a}{2}$. Then, (1.1) is UH stable.

6. UH STABILITY FOR (1.1) , WHEN $\overline{\theta} \in \zeta_m$, $\theta \in \zeta_n$, λ_0 , Φ , $\Psi \in \zeta_{n,m}$

Theorem 6.1. Assume all the eigenvalues of θ and $\overline{\theta}$ satisfy $|\arg(\mu(\theta))| > \frac{a\pi}{2}$ $\frac{a\pi}{2}, \quad \pi \geq |\arg(\mu(\overline{\theta}))| \geq k \quad (\frac{a\pi}{2})$ $\frac{2}{2} < k < \min\{\pi, \pi a\}.$ then (1.1) is UH stable.

REFERENCES

- 1. S. R. Aderyani, R. Saadati, T. Abdeljawad, and N. Mlaiki, Multi-stability of non homogenous vector-valued fractional differential equations in matrix-valued Menger spaces, Alexandria Engineering Journal, $61(12)(2022)$, 10913-10923.
- 2. S. R. Aderyani, R. Saadati, Best approximations of the -Hadamard fractional Volterra integro-differential equation by matrix valued fuzzy control functions, Advances in Difference Equations, 2021(1)(2021), 1-21.
- 3. S. R. Aderyani, R. Saadati, C. Li, T. M. Rassias, and C. Park, Special functions and multi-stability of the Jensen type random operator equation in C^* -algebras via fixed point, Journal of Inequalities and Applications, (2022).
- 4. S. R. Aderyani, R. Saadati, T. M. Rassias, and P. Choonkil, Best approximation of (G1, G2)-random operator inequality in matrix Menger Banach algebras with application of stochastic Mittag-Leffler and H-Fox control functions, Journal of Inequalities and Applications, $(2022)(1)$.