

The 7th Seminar on Functional Analysis and its Applications

1-2 March 2023

Imam Khomeini International University Qazvin, Iran

STABILITY RESULTS OF FRACTIONAL DIFFERENTIAL EQUATIONS IN THE HILFER SENSE IN MATRIX-VALUED MENGER SPACES

SAFOURA REZAEI ADERYANI*, REZA SAADATI*

School of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran rsaadati@iust.ac.ir

ABSTRACT. In the present paper, we use some special functions to present the notion of multi-stability and obtain an approximation of fractional differential equations through a fixed point theory. Moreover, some UH stability results for the governing models in different cases are gained.

1. Introduction

Assume the non homogenous vector-valued fractional differential equation given by

$${}^{\mathcal{H}}\mathbf{D}^{a,\sigma}\Phi(\lambda) = \theta\Phi(\lambda) + \Phi(\lambda)\overline{\theta} + \Psi(\lambda), \quad \Phi(0) = \lambda_0, \tag{1.1}$$

in which ${}^{\mathcal{H}}\mathbf{D}^{a,\sigma}$ is the Hilfer fractional derivative of order a and parameter σ , and $0 < \lambda < \omega < +\infty$. Assume ζ_n be a matrix of n^2 .

Consider the following cases:

- $(1): \overline{\theta}, \theta = 0_{1\times 1}, \lambda_0, \Phi, \Psi \in \zeta_1,$
- (2): $\overline{\theta} = 0_{1\times 1}, \ \theta \in \zeta_n, \ \lambda_0, \Phi, \Psi \in \zeta_{n\times 1},$
- (3) : $\overline{\theta} = 0_{m \times m}, \ \theta \in \zeta_n, \ \lambda_0, \Phi, \Psi \in \zeta_{n \times m},$

²⁰²⁰ Mathematics Subject Classification. Primary 47B35; Secondary 30H05 Key words and phrases. Mittag-Leffler matrix, Matrix valued fractional differential equation, Hilfer deriavative.

^{*} Speaker.

^{*} Speaker.

$$(4): \overline{\theta} \in \zeta_m, \ \theta \in \zeta_n, \ \lambda_0, \Phi, \Psi \in \zeta_{n \times m}.$$

In case (1), we use some special functions to study a class of matrix-valued random controllers and also to present the notion of multi-stability. Next, we show the equation (1.1) is the multi-stable. In other cases, via the fixed point theory, we study the UH stability for the equation (1.1).

2. Preliminaries

Assume $\mathcal{O} = [0, 1]$ and

$$\operatorname{diag}\zeta_n(\mathcal{O}) = \left\{ \begin{bmatrix} v_1 & & \\ & \ddots & \\ & & v_n \end{bmatrix} = \operatorname{diag}[v_1, \cdots, v_n], \ v_1, ..., v_n \in \mathcal{O} \right\}.$$

We denote $v := \operatorname{diag}[v_1, \cdots, v_n] \leq \beta := \operatorname{diag}[\beta_1, \cdots, \beta_n]$ if $v_i \leq \beta_i$ for all $1 \le i \le n$.

Next, we define generalized t-norm (GTN) on $\operatorname{diag}\zeta_n(\mathcal{O})$.

Definition 2.1. A GTN on diag $\zeta_n(\mathcal{O})$ is an operation \circledast : diag $\zeta_n(\mathcal{O})$ × $\operatorname{diag}\zeta_n(\mathcal{O}) \to \operatorname{diag}\zeta_n(\mathcal{O})$ satisfying the conditions below:

- (1) $(\forall v \in \operatorname{diag}\zeta_n(\mathcal{O}))(v \circledast \mathbf{1}) = v)$ (boundary condition);
- (2) $(\forall (v, \beta) \in (\operatorname{diag}\zeta_n(\mathcal{O}))^2)(v \circledast \beta = \beta \circledast v)$ (commutativity);
- (3) $(\forall (v, \beta, \gamma) \in (\operatorname{diag}\zeta_n(\mathcal{O})^3)(v \circledast (\beta \circledast \gamma) = (v \circledast \beta) \circledast \gamma)$ (associativity);
- (4) $(\forall (v, v', \beta, \beta') \in (\operatorname{diag}\zeta_n(\mathcal{O}^4)(v \prec v' \text{ and } \beta \prec \beta' \Longrightarrow v \circledast \beta \prec v' \circledast \beta')$ (monotonicity).

For any $v, \beta \in \operatorname{diag}\zeta_n(\mathcal{O})$ and any sequences $\{v_k\}$ and $\{\beta_k\}$ converging to v and β , if we get $\lim_{k}(v_k \otimes \beta_k) = v \otimes \beta$, thus \otimes on $\operatorname{diag}\zeta_n(\mathcal{O})$ is continuous.

Presume \mathcal{Z}^+ , the set of matrix distribution functions, including increasing and left continuous maps $\psi : \mathbb{R} \cup \{-\infty, \infty\} \to \operatorname{diag}\zeta_n(\mathcal{O})$ s.t. $\psi_0 = \mathbf{0}$ and $\psi_{+\infty} = \mathbf{1}$. Now $\Delta^+ \subseteq \mathcal{Z}^+$ are all mappings $\psi \in \mathcal{Z}^+$ for which $\ell^-\psi_{\varepsilon} = 0$ $\lim_{\sigma \to \varepsilon^-} \psi_{\sigma} = \mathbf{1}.$

In \mathcal{Z}^+ , we define "\(\preceq\)" as: $\Psi \leq \psi \iff \Psi_{\varepsilon} \leq \psi_{\varepsilon}, \forall \varepsilon \in \mathbb{R}$. In addition

$$\nabla_r^j = \left\{ \begin{array}{ll} \mathbf{0}, & \text{if } r \leq j, \\ \mathbf{1}, & \text{if } r > j \end{array} \right.$$

belongs to \mathcal{Z}^+ and for each matrix distribution function ψ , $\psi \leq \nabla^0$.

Definition 2.2. Assume \circledast be a continuous GTN, \mathcal{J} be a linear space, and $\psi: \mathcal{J} \to \Delta^+$ be a matrix distribution function. The triple $(\mathcal{J}, \psi, \circledast)$ is called a matrix Menger normed space if we get

- (1) $\psi_{\varepsilon}^{j} = \nabla_{\varepsilon}^{0}$ for all $\varepsilon > 0$ if and only if j = 0; (2) $\psi_{\varepsilon}^{\nu j} = \psi_{\frac{\varepsilon}{|\nu|}}^{j}$ for any $s \in \mathcal{J}$ and $\nu \in \mathbb{C}$ with $\nu \neq 0$;
- (3) $\psi_{\varepsilon+\varepsilon'}^{j+j'} \succeq \psi_{\varepsilon}^{j} \circledast \psi_{\varepsilon'}^{j'}$ for any $j, j' \in \mathcal{J}$ and $\varepsilon, \varepsilon' \geq 0$.

A complete matrix Menger normed space is called a matrix Menger Banach space.

For more details, we refer to [1, 2, 3].

3. Multi-stability for (1.1), when $\bar{\theta}, \theta = 0_{1\times 1}, \lambda_0, \Phi, \Psi \in \zeta_{1.1}$,

Assume the following random controller given by

$$\Lambda\left(-\frac{|\lambda|^{a}}{\Theta\varepsilon}\right) = \operatorname{diag}\left[{}_{0}\mathbb{H}_{0}\left(-\frac{|\lambda|^{a}}{\Theta\varepsilon}\right),{}_{0}\mathbb{H}_{1}\left[e_{1};-\frac{|\lambda|^{a}}{\Theta\varepsilon}\right],{}_{2}\mathbb{H}_{1}\left[d_{1},d_{2};e_{1};-\frac{|\lambda|^{a}}{\Theta\varepsilon}\right], (3.1)\right]$$

$${}_{1}\mathbb{H}_{1}\left[d_{1};e_{1};-\frac{|\lambda|^{a}}{\Theta\varepsilon}\right],{}_{s}\mathbb{H}_{r}\left[-\frac{|\lambda|^{a}}{\Theta\varepsilon}\left|_{(e_{1},E_{1}),\dots,(e_{r},E_{r})}^{(d_{1},D_{1}),\dots,(d_{s},D_{s})}\right],{}_{s}^{v}\mathbb{H}_{r}^{w}\left[-\frac{|\lambda|^{a}}{\Theta\varepsilon}\left|_{(e_{j},E_{j})_{1,r}}^{(d_{j},D_{j})_{1,s}}\right|\right]$$

where $\Theta > 0$, $\varepsilon \in (0, \infty)$, 0 < a < 1, and ${}_{0}\mathbb{H}_{0}$, ${}_{0}\mathbb{H}_{1}$, ${}_{1}\mathbb{H}_{1}$, ${}_{s}\mathbb{H}_{r}$, ${}_{s}^{v}\mathbb{H}_{r}^{w}$ are Exponential function, Mittag–Leffler function, Hypergeometric function, Wright function, Fox–Wright function, and Fox's H–function respectively. for more details see [4].

Notice that the Fox's H-function is defined by

$${}_{s}^{v}\mathbb{H}_{r}^{w}\left[X\Big|_{(e_{j},E_{j})_{1,r}}^{(d_{j},D_{j})_{1,s}}\right] := \frac{1}{2\pi i} \int_{Z} O(Y)X^{Y}dY, \tag{3.2}$$

where $i^2 = -1$, $X \in \mathbb{C} \setminus \{0\}$, $X^Y = \exp(Y[\log|X| + i\arg(X)])$, $\log|X|$ denotes the natural logarithm of |X| and $\arg(X)$ is not necessarily the principal value. For convenience,

$$O(Y) := \frac{\prod_{j=1}^{v} \Gamma(e_j - E_j Y) \prod_{j=1}^{w} \Gamma(1 - d_j + D_j Y)}{\prod_{j=v+1}^{r} \Gamma(1 - e_j + E_j Y) \prod_{j=w+1}^{s} \Gamma(d_j - D_j Y)},$$

where an empty product is interpreted as 1, and the integers v, w, s, r satisfy the inequalities $0 \le w \le s$ and $1 \le v \le r$. Assume the coefficients

$$D_j > 0 \ (j = 1, ..., s)$$
 and $E_j > 0 \ (j = 1, ..., r)$,

and the complex parameters

$$d_{i}$$
 $(j = 1, ..., s)$ and e_{i} $(j = 1, ..., r)$

are constrained such that no poles of integrand in (3.2) coincide, and Z is a suitable contour of the Mellin-Barnes type (in the complex Y-plane) which separates the poles of one product from the others. Further, if we assume

$$\ell := \sum_{j=1}^{w} D_j - \sum_{j=w+1}^{s} D_j + \sum_{j=1}^{v} E_j - \sum_{j=Q+1}^{r} E_j > 0,$$

then the integral in (3.2) converges absolutely and defines the \mathbb{H} -function, which is analytic in the sector: $|\arg(X)|<\frac{1}{2}\ell\pi$ and with the point X=0 being tacitly excluded. Actually, the \mathbb{H} -function makes sense and also defines an analytic function of X when either

$$E := \sum_{j=1}^{s} D_j - \sum_{j=1}^{r} E_j < 0$$
 and $0 < |X| < \infty$,

or

$$E = 0$$
 and $0 < |X| < R := \prod_{j=1}^{s} D_j^{-D_j} \prod_{j=1}^{r} E_j^{E_j}$.

Definition 3.1. Equation (1.1) has Multi-stability, with respect to $\Lambda(-\frac{|\lambda|^a}{\Theta\varepsilon})$, if there is $\hbar > 0$, s.t for all $\Theta > 0$, and all solution Φ to (3.3), there is a solution Φ' to (1.1), with $\psi_{\varepsilon}^{\Phi-\Phi'} \succeq \Lambda\left(-\frac{|\lambda|^a}{\hbar\Theta\varepsilon}\right)$, where $\varepsilon \in (0,\infty)$.

Theorem 3.2. Let (1.1), when $\overline{\theta}, \theta = 0_{1\times 1}, \lambda_0, \Phi, \Psi \in \zeta_{1,1}$, also Let

$$\psi_{\varepsilon}^{\mathcal{H}} \mathbf{D}^{\sigma,\delta} \Phi(\lambda) - \Psi(\lambda) \succeq \Lambda \left(-\frac{|\lambda|^a}{\Theta \varepsilon} \right). \tag{3.3}$$

Then (1.1) is Multi-stable, with respect to $\Lambda(-\frac{|\lambda|^a}{\Theta\varepsilon})$.

4. UH STABILITY FOR (1.1), WHEN $\overline{\theta} = 0_{1\times 1}, \ \theta \in \zeta_n, \ \lambda_0, \Phi, \Psi \in \zeta_{n,1}$,

Theorem 4.1. If each the eigenvalues of θ satisfy $|\arg(\mu(\theta))| > \frac{a\pi}{2}$. Then, (1.1) is UH stable.

5. UH STABILITY FOR (1.1), WHEN $\overline{\theta} = 0_{m \times m}, \ \theta \in \zeta_n, \ \lambda_0, \Phi, \Psi \in \zeta_{n,m}$

Theorem 5.1. If any the eigenvalues of θ satisfy $|\arg(\mu(\theta))| > \frac{a\pi}{2}$. Then, (1.1) is UH stable.

6. UH STABILITY FOR (1.1), WHEN $\overline{\theta} \in \zeta_m$, $\theta \in \zeta_n$, $\lambda_0, \Phi, \Psi \in \zeta_{n,m}$

Theorem 6.1. Assume all the eigenvalues of θ and $\overline{\theta}$ satisfy

$$|\arg(\mu(\theta))| > \frac{a\pi}{2}, \quad \pi \ge |\arg(\mu(\overline{\theta}))| \ge k \quad (\frac{a\pi}{2} < k < \min\{\pi, \pi a\}).$$
 then (1.1) is UH stable.

References

- 1. S. R. Aderyani, R. Saadati, T. Abdeljawad, and N. Mlaiki, *Multi-stability of non homogenous vector-valued fractional differential equations in matrix-valued Menger spaces*, Alexandria Engineering Journal, **61**(12)(2022), 10913-10923.
- 2. S. R. Aderyani, R. Saadati, Best approximations of the -Hadamard fractional Volterra integro-differential equation by matrix valued fuzzy control functions, Advances in Difference Equations, 2021(1)(2021), 1-21.
- 3. S. R. Aderyani, R. Saadati, C. Li, T. M. Rassias, and C. Park, Special functions and multi-stability of the Jensen type random operator equation in C*-algebras via fixed point, Journal of Inequalities and Applications, (2022).
- 4. S. R. Aderyani, R. Saadati, T. M. Rassias, and P. Choonkil, Best approximation of (G1, G2)-random operator inequality in matrix Menger Banach algebras with application of stochastic Mittag-Leffler and H-Fox control functions, Journal of Inequalities and Applications, (2022)(1).