

STUDY ON NEW SUBCLASSES OF ANALYTIC FUNCTIONS IN GEOMETRIC FUNCTIONS THEORY

HORMOZ RAHMATAN

Department of Mathematics, Faculty of Science, Payame Noor University, P.O.Box 19395-3697, Tehran, Iran. h_rahmatan@pnu.ac.ir

ABSTRACT. In this paper, we give characterization of subclasses of analytic functions, we consider Φ -like functions on the unit disc in \mathbb{C} in terms of Löwner chains.

1. INTRODUCTION

The class of all analytic functions was denoted by \mathcal{A} . Functions belonging to this class can be displayed in the form of the following power series

$$f(z) = z + \sum_{n=1}^{\infty} a_n z^n.$$
 (1.1)

which are analytic in the open unit disc $\Delta = \{z : z \in \mathbb{C} : |z| < 1\}$. Further, by S. The class of univalent functions in A which normalized with the conditions f(0) = f'(0) - 1 = 0 was represented by S.

Also, let S^* denote the class of starlike functions that is defined as

$$S^* = \left\{ f \in \mathcal{S}; \ Re \ \left(\frac{zf'(z)}{f(z)}\right) > 0, \ z \in \Delta \right\}.$$

²⁰²⁰ Mathematics Subject Classification. 30C45

Key words and phrases. Löwner chains, Univalent-star-like functions, spiral-like functions, Φ -like functions, almost Φ -like functions of order α .

Theorem 1.1. Let $f : \Delta \to \mathbb{C}$ be a holomorphic function such that f(0) = 0and $f'(0) \neq 0$. Also let $\alpha \in \mathbb{R}$, $|\alpha| < \frac{\pi}{2}$. Then f is spiralike of type α if and only if

$$Re \left(e^{i\alpha}\frac{zf'(z)}{f(z)}\right) > 0, \ z \in \Delta$$

Definition 1.2. Let f be analytic in the unit disk Δ of the complex plane with $f(0) = 0, f'(0) \neq 0$. Let Φ be analytic on $f(\Delta)$ with $\Phi = 0, \operatorname{Re} \Phi'(0) > 0$. Then f is Phi-like(in Δ) if

$$Re \left(\frac{zf'(z)}{\Phi(f(z))}\right) > 0, \ z \in \Delta$$
(1.2)

Remark 1.3. The two clasical case of Definition 1.2 are given by $\Phi(\omega) = \omega(f$ is starlike) and more generally, $\Phi(\omega) = \lambda \omega$, $Re \lambda > 0$ (f is apiral-like of type $\arg \lambda$).

Definition 1.4. Let \mathcal{P} denote the class of holomorphic functions p in Δ such that p(0) = 1 and Re $p(z) > 0, z \in \Delta$. This class is usually called the Caratheodory class

This class is usually called the Caratheodory class.

In the lemma and theory of Lowner chains, if f is a function which depends holomorphically on $z \in \Delta$ and is also a function of other real variables, it is customary to write f'(z, .) instead of $\frac{\partial f}{\partial z}(z, .)$.

Lemma 1.5. [1] The function $f : \Delta \times [0, \infty) \to \mathbb{C}$ with $f(0, t) = 0, f'(0, t) = e^t$, is a Lowner chain if and only if the following conditions hold: (i) There exist $r \in (0, 1)$ and a constant $M \ge 0$ such that f(., t) is holomor-

(i) There exist $r \in (0, 1)$ and a constant $M \ge 0$ such that f(., t) is notomorphic on Δ_r for each $t \ge 0$, where $\Delta = \{z \in \mathbb{C} : |z| < r\}$, locally absolutely continuous in $t \ge 0$ locally uniformly with respect to $z \in \Delta_r$, and

$$|f(z,t)| \le Me^t, \qquad |z| \le r, \quad t \ge 0.$$

(ii) There exists a function p(z,t) such that $p(.,t) \in \mathcal{P}$ for each $t \ge 0, p(z,.)$ is measurable on $[0,\infty)$ for each $z \in \Delta$, and for all $z \in \Delta_r$,

$$\frac{\partial f}{\partial t}(z,t) = zf'(z,t)p(z,t), \qquad a.e. \quad t \ge 0.$$

(iii) For each $t \ge 0$, f(.,t) is the analytic continuation of $f(.,t)|_{\Delta_r}$ to Δ , and furthermore this analytic continuation exists under the assumptions (i) and (ii).

Lemma 1.6. Let f(z,t) be a Lowner chain. Then there exists a function p(z,t) such that $p(.,t) \in \mathcal{P}$, $t \geq 0$, p(z,t) is measurable in $t \in [0,\infty)$ for each $z \in \Delta$, and

$$\frac{\partial f}{\partial t}(z,t) = zf'(z,t)p(z,t), \quad z \in \Delta, t \ge 0.$$
(1.3)

some researchers investigate on subclasses of univalent functions by using of new methods [2, 5, 3, 4].

In this paper, we introduce new subclass of univalent functions, also we shall obtain characterization of the subclass by using the lowner chains method.

2. Main Results

Definition 2.1. Let f be analytic in the unit disk Δ of the complex plane with $f(0) = 0, f'(0) \neq 0$. Let Φ be analytic on $f(\Delta)$ with $\Phi = 0, \operatorname{Re} \Phi'(0) > 0$. Then f is almost Φ -like function of order $\alpha(\operatorname{in} \Delta, 0 \leq \alpha < 1)$ if

$$Re \left(\frac{\Phi(f(z))}{zf'(z))}\right) > 0, \ z \in \Delta$$

$$(2.1)$$

Theorem 2.2. Let f is Φ -like in Δ . Then f is univalent in Δ and $f(\Delta)$ is Φ -like.

Corollary 2.3. Let f be analytic in Δ with f(0) = 0. Then f is univalent in Δ if and only if f is Φ -like for some Φ .

Theorem 2.4. Let D be simply connected subset of \mathbb{C} , so suppose $f \in \mathcal{A}$ be a Φ -like function on Δ with $\Phi'(0) = 1$ and let $f(z) \in D$ if and only if $f(z,t) = e^t \Phi(f(z))$ is a lowner chain.

Theorem 2.5. Let $f \in \mathcal{A}$ be a Φ -like function on Δ with $\Phi'(0) = 1$, $\omega \in f(\Delta) - 0$, if and only if $f(z, t) = e^t f(z)$ is a lowner chain.

Theorem 2.6. Let D be simply connected subset of \mathbb{C} , so let $f \in \mathcal{A}$ be a almost Φ -like function of order α on Δ with $\Phi'(0) = 1$ and let $f(z) \in D$ if and only if

$$g(z,t) = e^{\frac{1}{1-\alpha}t} \Phi(f(e^{\frac{\alpha}{\alpha-1}t}z)), \quad (0 \le \alpha < 1, \ z \in \Delta, t \ge 0)$$

is a lowner chain.

References

- I. Graham, G. Kohr, Geometric function theory in one and higher dimensions, Marcel Dekker, New York, (2003).
- S. Kanas, A. Wisniowska, Conic regions and k-uniform convexity II, Folia. Sci. Univ. Tech. Resov., 170, (1998), 65-78.
- 3. M. S. Robertson, On the theory of univalent functions, Ann. Math., 37, (1936), 374-408.
- H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett, 23, 10, (2010) 1188-1192.
- Q.- H. Xu, T.-S. Liu, Loewner chains and a subclass of biholomorphic mappings, J. Math. Anal. Appl., 334, (2007), 1096–1105.