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Abstract. A real mapping Mω
f (t) is introduced, a generalized form of

Fejér’s inequality is obtained and some new and generalized inequalities
in connection with fractional integrals and monotone functions are given.

1. Introduction and Preliminaries

Lipót Fejér (1880-1959) in 1906 [4], while studying trigonometric poly-
nomials, discovered the following integral inequalities which later became
known as Fejér’s inequality (in some references is separated to the left and
right):

F
(a+ b

2

)∫ b

a
G(x)dx ≤

∫ b

a
F(x)G(x)dx ≤ F(a) + F(b)

2

∫ b

a
G(x)dx, (1.1)

where F is a convex function ([9]) in the interval (a, b) and G is a positive
function in the same interval such that

G(a+ t) = G(b− t), 0 ≤ t ≤ a+ b

2
,

i.e., y = G(x) is a symmetric curve with respect to the straight line which
contains the point (a+b

2 , 0) and is normal to the x-axis. In fact the Fejér’s
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inequality (1.1), is the weighted version of celebrated Hermite-Hadamard’s
inequality for convex function f : [a, b] → R:

F
(a+ b

2

)
≤ 1

b− a

∫ b

a
F(x)dx ≤ F(a) + F(b)

2
. (1.2)

Our aim in this paper is obtaining a generalized form of Fejér’s inequality and
applying it to give some new and generalized inequalities in connection with
fractional integrals and monotone functions. We introduce a real mapping
Mω

f (t) and obtain some basic properties for it. Also we use the concept of

h-convexity introduced by S. Varošanec in 2006 ([13]):

Definition 1.1. We say that a non-negative function f : I ⊆ R → R is h-
convex or f ∈ SX(h, I), if for non-negative function h : (0, 1) ⊆ J ⊆ R → R
(h ̸≡ 0), all x, y ∈ I and α ∈ (0, 1) we have

F(αx+ (1− α)y) ≤ h(α)F(x) + h(1− α)F(y).

f is said to be h-concave or f ∈ SV (h, I), If above inequality is reversed.

The mapping Mω
f (t). For two real numbers a < b, consider integrable

functions f : [a, b] → R and ω : [a, b] → R+ ∪ {0}. Define a mapping
Mω

f (t) : [0, 1] → R as

Mω
f (t) =

∫ mt(L,R)

a
f(x)ω(x)dx+

∫ b

Mt(L,R)
f(x)ω(x)dx,

such that

mt(L,R) = min{L(t),R(t)},Mt(L,R) = max{L(t),R(t)}

where L(t) : [0, 1] → [a, b] and R(t) : [0, 1] → [a, b] are considered as the
following:

L(t) = tb+ (1− t)a,R(t) = ta+ (1− t)b

for any t ∈ [0, 1]. Note that

M1
f (t) =

∫ mt(L,R)

a
f(x)dx+

∫ b

Mt(L,R)
f(x)dx,

where by 1, we mean ω ≡ 1.

Some basic properties for the mapping Mω
f (t) are obtained in the follow-

ing:

Proposition 1.2. Consider two functions f : [a, b] → R and ω : [a, b] →
R+ ∪ {0}. Then
(i) For all t ∈ [0, 1],

Mω
f (t) = Mω

f (1− t),

which shows Mω
f (t) is symmetric on [a, b] with respect to 1

2 .
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(ii) For symmetric ω on [a, b] with respect to a+b
2 and p, q ≥ 1 with 1

p+
1
q = 1,

we have ∣∣Mω
f (t)

∣∣ ≤ ∥f∥p∥ω∥q.

Also if mt(L,R) = L(t), then∣∣Mω
f (t)

∣∣ ≤ (
1

2
)
1
q [t(b− a)]

1
p ∥ω∥q∥f∥∞,

and if mt(L,R) = R(t), then∣∣Mω
f (t)

∣∣ ≤ (
1

2
)
1
q [(1− t)(b− a)]

1
p ∥ω∥q∥f∥∞.

(iii) Suppose that the function (fω)(x) = f(x)ω(x) is convex on [a, b]. If

mt(L,R) = R(t) for some t ∈ [0, 1), then the function
Mω

f (t)

1−t is convex. Also

if mt(L,R) = L(t) for some t ∈ (0, 1], then the function
Mω

f (t)

t is convex.
(iv) Suppose that f and ω are two continuous functions on [a, b]. If f is
nonnegative (nonpositive) on [a, b], then the function Mω

f (t) is increasing

(decreasing) on [0, 12) and it is decreasing (increasing) on (12 , 1]. Also Mω
f (t)

has a relative extreme point in t = 1
2 . If ω ̸≡ 0, then corresponding to any

x ∈ [a, b] \ {a+b
2 } satisfying

f(x) + f(a+ b− x) = 0,

there exists a critical point for Mω
f (t).

2. Generalization and refinement of Fejér’s Inequality

The following result presents a new and generalized type of the celebrated
Fejér’s inequality in connection with h-convex functions.

Theorem 2.1. Consider two integrable functions f : [a, b] → R and w :
[a, b] → R+ ∪ {0} such that f is h-convex and ω is symmetric with respect
to a+b

2 . For all t ∈ [0, 1], the following inequality hold:

1

2h(12)
f
(a+ b

2

)∫ Mt(L,R)

mt(L,R)
ω(x)dx ≤

∫ b

a
f(x)ω(x)dx−Mω

f (t) (2.1)

≤ |R(t)− L(t)|[f ◦ L](t) + [f ◦ R](t)

(L(t)−R(t))

∫ L(t)

R(t)
h

(
x−R(t)

L(t)−R(t)

)
ω(x)dx

=
|R(t)− L(t)|

(
[f ◦ L](t) + [f ◦ R](t)]

)
(R(t)− L(t))

∫ R(t)

L(t)
h

(
x− L(t)

R(t)− L(t)

)
ω(x)dx.

Inequality (2.1) is a generalization of many Fejér’s type inequalities ob-
tained for h-convex functions in literature. However if we set h(s) = s in
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(2.1), then the following inequality holds:

f
(a+ b

2

)∫ Mt(L,R)

mt(L,R)
ω(x)dx ≤

∫ b

a
f(x)ω(x)dx−Mω

f (t) (2.2)

≤ [f ◦ L](t) + [f ◦ R](t)

|R(t)− L(t)|

∫ R(t)

L(t)
(x− L(t))ω(x)dx

=
[f ◦ L](t) + [f ◦ R](t)

|L(t)−R(t)|

∫ L(t)

R(t)
(x−R(t))ω(x)dx,

Inequality (2.2) is a new generalized Fejér’s type inequality related to the
convex functions.

If we set t = 0, 1 in (2.1) (Mω
f (0) = Mω

f (1) = 0), then we recapture the
following Fejér’s type inequality related to the h-convex functions obtained
in [2]:

1

2h(12)
f
(a+ b

2

)∫ b

a
ω(x)dx ≤

∫ b

a
f(x)ω(x)dx (2.3)

≤ (b− a)[f(a) + f(b)]

∫ 1

0
h(s)ω

(
sa+ (1− s)b

)
ds,

Also we can obtain a new h-convex version of Fejér’s inequality:

1

2h(12)
f
(a+ b

2

)∫ b

a
ω(x)dx ≤

∫ b

a
f(x)ω(x)dx (2.4)

≤ f(a) + f(b)

2

∫ b

a
H
(b− x

b− a

)
ω(x)dx

=
f(a) + f(b)

2

∫ b

a
H
(x− a

b− a

)
ω(x)dx.

If in (2.3) and (2.4) we consider ω ≡ 1, then we recapture the following
result obtained in [11]:

1

2h(12)
f
(a+ b

2

)
≤ 1

b− a

∫ b

a
f(x)dx ≤

[
f(a) + f(b)

] ∫ 1

0
h(s)ds,

which is the Hermite-Hadamard’s inequality related to h-convex functions.

3. Fractional Integrals

In this section, we introduce a new class of fractional integrals and just
consider one special case which is known in literature as Riemann-Liouville
fractional integrals (see [5, 7, 8, 10]) to find some hermite-hadamard’s type
inequalities for it by using generalized Fejér inequality obtained in previous
section.
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For t ∈ [0, 1]\{1
2} consider a bifunctionG : [mt(L,R),Mt(L,R)]×[mt(L,R),Mt(L,R)] →

R+ ∪ {0} and define the following class of fractional integrals:

Fmt(L,R)+ [f ](x) =

∫ x

mt(L,R)
G(x, u)f(u)du, x > mt(L,R)

and

FMt(L,R)− [f ](x) =

∫ Mt(L,R)

x
G(x, u)f(u)du, x < Mt(L,R)

if above integrals exist.
Now we discuss a special case of Fmt(L,R)+ [f ](x) and FMt(L,R)− [f ](x) and

obtain some results in connection with Theorem 2.1.

In Fmt(L,R)+ [f ](x) and FMt(L,R)− [f ](x) for α > 0, consider

G(x, u) =
1

Γ(α)
|x− u|α−1, x, u ∈ [mt(L,R),Mt(L,R)].

So we achieve the following generalized Riemann-Liouville fractional inte-
grals:

J α
mt(L,R)+

f(x) =
1

Γ(α)

∫ x

mt(L,R)
(x− u)α−1f(u)du x > mt(L,R)

and

J α
Mt(L,R)−

f(x) =
1

Γ(α)

∫ Mt(L,R)

x
(u− x)α−1f(u)dt Mt(L,R) < x.

Fractional integrals J α
mt(L,R)+

f(x) and J α
Mt(L,R)−

f(x) in special case (t =

0, 1) reduce to Jα
a+f(x) and Jα

b−f(x) respectively, which are known as Riemann-
Liouville fractional integrals. Now in Theorem 2.1, consider

ω(x) =
(Mt(L,R)− x)α−1 + (x−mt(L,R))α−1

Γ(α)
, x ∈ [mt(L,R),Mt(L,R)].

It is not hard to see that w is symmetric on [mt(L,R),Mt(L,R)] with
respect to a+b

2 and also nonnegative. Also the following results hold:∫ Mt(L,R)

mt(L,R)
ω(x)dx =

2
(
Mt(L,R)−mt(L,R)

)α
Γ(α+ 1)

=
2(b− a)α|1− 2t|α

Γ(α+ 1)
,

∫ b

a
f(x)ω(x)dx−Mω

f (t) = J α
mt(L,R)+

[f ](Mt(L,R)) + J α
Mt(L,R)−

[f ](mt(L,R)),

and∫ 1

0
h(s)[ω ◦As](mt(L,R),Mt(L,R))ds = (Mt(L,R)−mt(L,R))α−1

∫ 1

0
H(s)sα−1ds.
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Above results altogether imply that:

1

h(12)
f
(a+ b

2

)
≤ Γ(α+ 1)

(b− a)α|1− 2t|α
[J α

mt(L,R)+
[f ](Mt(L,R)) + J α

Mt(L,R)−
[f ](mt(L,R))]

(3.1)

≤ α[f ◦ L(t) + f ◦ R(t)]

∫ 1

0
H(s)sα−1ds,

for t ∈ [0, 1] \ {1
2}.

In the case that h(s) = s, from (3.1) we reach the following inequality
which is generalization of inequality (2.1) obtained in [12]:

f
(a+ b

2

)
≤ Γ(α+ 1)

2(b− a)α|1− 2t|α
[J α

mt(L,R)+
[f ](Mt(L,R)) + J α

Mt(L,R)−
[f ](mt(L,R))]

≤ f ◦ L(t) + f ◦ R(t)

2
.

Also for α = 1, we obtain a generalization of inequality (2.1) presented in
[11]:

1

2h(12)
f
(a+ b

2

)
≤ 1

(b− a)|1− 2t|

∫ Mt(L,R)

mt(L,R)
f(x)dx ≤ [f ◦ L(t) + f ◦ R(t)]

∫ 1

0
h(s)ds.

4. Refinements for Hermite-Hadamard’s Inequality by
Monotone Functions

In this section, we obtain some refinements for Hermite-Hadamard’s in-
equality by the use of fractional integrals discussed in previous section pro-
vided that considered functions are nonnegative and monotone. We focus
on Riemann-Liouville fractional integrals but results can be extended to
many classes of fractional integrals. We need the following result which is a
consequence of Theorem 1 in [1](see also [3, 6]).

Theorem 4.1. If f1 and f2 are nonnegative increasing functions on [0, 1],
Then ∫ 1

0
f1(x)dx

∫ 1

0
f2(x)dx ≤

∫ 1

0
f1(x)f2(x)dx.

Here we give some refinements for Hermite-Hadamard’s inequality by the
use of fractional integrals for h-convex functions:

Theorem 4.2. Suppose that f : [a, b] → R is an integrable h-convex function
and t ∈ [0, 1] \ {1

2}. Then
(i) For α ≥ 1, the following inequality holds if f is nonnegative and increasing
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:

1

2h(12)
f
(a+ b

2

)
≤ 1

|1− 2t|(b− a)

∫ Mt(L,R)

mt(L,R)
f(u)du (4.1)

≤ Γ(α+ 1)

2|1− 2t|α(b− a)α

[
J α
mt(L,R)+

[f ](Mt(L,R)) + J α
Mt(L,R)−

[f ](mt(L,R))

]
≤ α

[f ◦ L(t) + f ◦ R(t)

2

] ∫ 1

0
H(s)sα−1ds.

(ii) For any α > 0 we have

1

2h(12)
f

(
a+ b

2

)
(4.2)

≤ Γ(α+ 1)

2|1− 2t|α(b− a)α

[
J α
mt(L,R)+

[f ](Mt(L,R)) + J α
Mt(L,R)−

[f ](mt(L,R))

]
≤ α

|1− 2t|(b− a)

∫ Mt(L,R)

mt(L,R)
f(u)du.
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