

ON GENERALIZED FEJÉR INEQUALITY AND A CLASS OF FRACTIONAL INTEGRALS

MOHSEN ROSTAMIAN DELAVAR[∗]

Department of Mathematics, Faculty of Basic Sciences, University of Bojnord, Bojnord, Iran

m.rostamian@ub.ac.ir

ABSTRACT. A real mapping $\mathcal{M}_f^{\omega}(t)$ is introduced, a generalized form of Fejér's inequality is obtained and some new and generalized inequalities in connection with fractional integrals and monotone functions are given.

1. Introduction and Preliminaries

Lipót Fejér (1880-1959) in 1906 [\[4\]](#page-6-0), while studying trigonometric polynomials, discovered the following integral inequalities which later became known as Fejer's inequality (in some references is separated to the left and right):

$$
\mathcal{F}\left(\frac{a+b}{2}\right)\int_{a}^{b}\mathcal{G}(x)dx \le \int_{a}^{b}\mathcal{F}(x)\mathcal{G}(x)dx \le \frac{\mathcal{F}(a) + \mathcal{F}(b)}{2}\int_{a}^{b}\mathcal{G}(x)dx, \tag{1.1}
$$

where F is a convex function ([\[9\]](#page-6-1)) in the interval (a, b) and G is a positive function in the same interval such that

$$
\mathcal{G}(a+t) = \mathcal{G}(b-t), \quad 0 \le t \le \frac{a+b}{2},
$$

i.e., $y = \mathcal{G}(x)$ is a symmetric curve with respect to the straight line which contains the point $(\frac{a+b}{2}, 0)$ and is normal to the x-axis. In fact the Fejer's

²⁰²⁰ Mathematics Subject Classification. Primary 26D15; Secondary 26A33

Key words and phrases. Fejér's inequality, Fractional integrals.

[∗] Speaker.

inequality [\(1.1\)](#page-0-0), is the weighted version of celebrated Hermite-Hadamard's inequality for convex function $f : [a, b] \to \mathbb{R}$:

$$
\mathcal{F}\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b \mathcal{F}(x)dx \le \frac{\mathcal{F}(a) + \mathcal{F}(b)}{2}.
$$
 (1.2)

Our aim in this paper is obtaining a generalized form of Fejer's inequality and applying it to give some new and generalized inequalities in connection with fractional integrals and monotone functions. We introduce a real mapping $\mathcal{M}_f^{\omega}(t)$ and obtain some basic properties for it. Also we use the concept of h-convexityintroduced by S. Varošanec in 2006 $([13])$ $([13])$ $([13])$:

Definition 1.1. We say that a non-negative function $f: I \subseteq \mathbb{R} \to \mathbb{R}$ is hconvex or $f \in SX(h, I)$, if for non-negative function $h : (0, 1) \subseteq J \subseteq \mathbb{R} \to \mathbb{R}$ $(h \not\equiv 0)$, all $x, y \in I$ and $\alpha \in (0, 1)$ we have

$$
\mathcal{F}(\alpha x + (1 - \alpha)y) \le h(\alpha)\mathcal{F}(x) + h(1 - \alpha)\mathcal{F}(y).
$$

f is said to be h-concave or $f \in SV(h, I)$, If above inequality is reversed.

The mapping $\mathcal{M}_f^{\omega}(t)$. For two real numbers $a < b$, consider integrable functions $f : [a, b] \rightarrow \mathbb{R}$ and $\omega : [a, b] \rightarrow \mathbb{R}^+ \cup \{0\}$. Define a mapping $\mathcal{M}_f^{\omega}(t):[0,1]\to\mathbb{R}$ as

$$
\mathcal{M}_f^{\omega}(t) = \int_a^{m_t(\mathcal{L}, \mathcal{R})} f(x)\omega(x)dx + \int_{M_t(\mathcal{L}, \mathcal{R})}^b f(x)\omega(x)dx,
$$

such that

$$
m_t(\mathcal{L}, \mathcal{R}) = \min\{\mathcal{L}(t), \mathcal{R}(t)\}, M_t(\mathcal{L}, \mathcal{R}) = \max\{\mathcal{L}(t), \mathcal{R}(t)\}
$$

where $\mathcal{L}(t) : [0,1] \to [a,b]$ and $\mathcal{R}(t) : [0,1] \to [a,b]$ are considered as the following:

$$
\mathcal{L}(t) = tb + (1-t)a, \mathcal{R}(t) = ta + (1-t)b
$$

for any $t \in [0,1]$. Note that

$$
\mathcal{M}_f^1(t) = \int_a^{m_t(\mathcal{L}, \mathcal{R})} f(x) dx + \int_{M_t(\mathcal{L}, \mathcal{R})}^b f(x) dx,
$$

where by 1, we mean $\omega \equiv 1$.

Some basic properties for the mapping $\mathcal{M}_f^{\omega}(t)$ are obtained in the following:

Proposition 1.2. Consider two functions $f : [a, b] \to \mathbb{R}$ and $\omega : [a, b] \to$ $\mathbb{R}^+ \cup \{0\}$. Then (i) For all $t \in [0,1]$,

$$
\mathcal{M}_f^{\omega}(t) = \mathcal{M}_f^{\omega}(1-t),
$$

which shows $\mathcal{M}^{\omega}_{f}(t)$ is symmetric on [a, b] with respect to $\frac{1}{2}$.

(ii) For symmetric ω on $[a, b]$ with respect to $\frac{a+b}{2}$ and $p, q \ge 1$ with $\frac{1}{p} + \frac{1}{q} = 1$, we have

$$
\left|\mathcal{M}_f^{\omega}(t)\right| \leq \|f\|_p \|\omega\|_q.
$$

Also if $m_t(\mathcal{L}, \mathcal{R}) = \mathcal{L}(t)$, then

$$
\left|\mathcal{M}_f^{\omega}(t)\right| \leq \left(\frac{1}{2}\right)^{\frac{1}{q}}[t(b-a)]^{\frac{1}{p}}\|\omega\|_q\|f\|_{\infty},
$$

and if $m_t(\mathcal{L}, \mathcal{R}) = \mathcal{R}(t)$, then

$$
\left|\mathcal{M}_f^{\omega}(t)\right| \leq \left(\frac{1}{2}\right)^{\frac{1}{q}} \left[(1-t)(b-a)\right]^{\frac{1}{p}} \|\omega\|_q \|f\|_{\infty}.
$$

(iii) Suppose that the function $(f\omega)(x) = f(x)\omega(x)$ is convex on [a, b]. If $m_t(\mathcal{L}, \mathcal{R}) = \mathcal{R}(t)$ for some $t \in [0, 1)$, then the function $\frac{\mathcal{M}_{\mathcal{I}}^{\omega}(t)}{1-t}$ $\frac{f(t)}{1-t}$ is convex. Also if $m_t(\mathcal{L}, \mathcal{R}) = \mathcal{L}(t)$ for some $t \in (0, 1]$, then the function $\frac{\mathcal{M}_{f}^{\omega}(t)}{t}$ $\frac{f^{(v)}}{t}$ is convex. (iv) Suppose that f and ω are two continuous functions on [a, b]. If f is nonnegative (nonpositive) on [a, b], then the function $\mathcal{M}_f^{\omega}(t)$ is increasing (decreasing) on $[0, \frac{1}{2}]$ $\frac{1}{2}$) and it is decreasing (increasing) on $(\frac{1}{2}, 1]$. Also $\mathcal{M}_f^{\omega}(t)$ has a relative extreme point in $t=\frac{1}{2}$ $\frac{1}{2}$. If $\omega \not\equiv 0$, then corresponding to any $x \in [a, b] \setminus \{\frac{a+b}{2}\}\$ satisfying

$$
f(x) + f(a+b-x) = 0,
$$

there exists a critical point for $\mathcal{M}_f^{\omega}(t)$.

2. GENERALIZATION AND REFINEMENT OF FEJÉR'S INEQUALITY

The following result presents a new and generalized type of the celebrated Fejér's inequality in connection with h -convex functions.

Theorem 2.1. Consider two integrable functions $f : [a, b] \rightarrow \mathbb{R}$ and w: $[a, b] \to \mathbb{R}^+ \cup \{0\}$ such that f is h-convex and ω is symmetric with respect to $\frac{a+b}{2}$. For all $t \in [0,1]$, the following inequality hold:

$$
\frac{1}{2h(\frac{1}{2})}f\left(\frac{a+b}{2}\right)\int_{m_t(\mathcal{L},\mathcal{R})}^{M_t(\mathcal{L},\mathcal{R})}\omega(x)dx \leq \int_a^b f(x)\omega(x)dx - \mathcal{M}_f^{\omega}(t) \tag{2.1}
$$
\n
$$
\leq \frac{|\mathcal{R}(t) - \mathcal{L}(t)|[f \circ \mathcal{L}](t) + [f \circ \mathcal{R}](t)}{(\mathcal{L}(t) - \mathcal{R}(t))}\int_{\mathcal{R}(t)}^{\mathcal{L}(t)} h\left(\frac{x - \mathcal{R}(t)}{\mathcal{L}(t) - \mathcal{R}(t)}\right)\omega(x)dx
$$
\n
$$
= \frac{|\mathcal{R}(t) - \mathcal{L}(t)|\left([f \circ \mathcal{L}](t) + [f \circ \mathcal{R}](t)]\right)}{(\mathcal{R}(t) - \mathcal{L}(t))}\int_{\mathcal{L}(t)}^{\mathcal{R}(t)} h\left(\frac{x - \mathcal{L}(t)}{\mathcal{R}(t) - \mathcal{L}(t)}\right)\omega(x)dx.
$$

Inequality (2.1) is a generalization of many Fejer's type inequalities obtained for h-convex functions in literature. However if we set $h(s) = s$ in [\(2.1\)](#page-2-0), then the following inequality holds:

$$
f\left(\frac{a+b}{2}\right) \int_{m_t(\mathcal{L}, \mathcal{R})}^{M_t(\mathcal{L}, \mathcal{R})} \omega(x) dx \le \int_a^b f(x) \omega(x) dx - \mathcal{M}_f^{\omega}(t) \qquad (2.2)
$$

$$
\le \frac{[f \circ \mathcal{L}](t) + [f \circ \mathcal{R}](t)}{|\mathcal{R}(t) - \mathcal{L}(t)|} \int_{\mathcal{L}(t)}^{\mathcal{R}(t)} (x - \mathcal{L}(t)) \omega(x) dx
$$

$$
= \frac{[f \circ \mathcal{L}](t) + [f \circ \mathcal{R}](t)}{|\mathcal{L}(t) - \mathcal{R}(t)|} \int_{\mathcal{R}(t)}^{\mathcal{L}(t)} (x - \mathcal{R}(t)) \omega(x) dx,
$$

Inequality (2.2) is a new generalized Fejer's type inequality related to the convex functions.

If we set $t = 0, 1$ in (2.1) $(\mathcal{M}_f^{\omega}(0) = \mathcal{M}_f^{\omega}(1) = 0)$, then we recapture the following Fejér's type inequality related to the h -convex functions obtained in [\[2\]](#page-6-3):

$$
\frac{1}{2h(\frac{1}{2})}f\left(\frac{a+b}{2}\right)\int_{a}^{b}\omega(x)dx \le \int_{a}^{b}f(x)\omega(x)dx
$$
\n
$$
\le (b-a)[f(a)+f(b)]\int_{0}^{1}h(s)\omega\left(sa+(1-s)b\right)ds,
$$
\n(2.3)

Also we can obtain a new h -convex version of Fejér's inequality:

$$
\frac{1}{2h(\frac{1}{2})}f\left(\frac{a+b}{2}\right)\int_{a}^{b}\omega(x)dx \le \int_{a}^{b}f(x)\omega(x)dx
$$
\n
$$
\le \frac{f(a)+f(b)}{2}\int_{a}^{b}H\left(\frac{b-x}{b-a}\right)\omega(x)dx
$$
\n
$$
=\frac{f(a)+f(b)}{2}\int_{a}^{b}H\left(\frac{x-a}{b-a}\right)\omega(x)dx.
$$
\n(2.4)

If in [\(2.3\)](#page-3-1) and [\(2.4\)](#page-3-2) we consider $\omega \equiv 1$, then we recapture the following result obtained in [\[11\]](#page-6-4):

$$
\frac{1}{2h(\frac{1}{2})}f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a}\int_a^b f(x)dx \le \left[f(a)+f(b)\right]\int_0^1 h(s)ds,
$$

which is the Hermite-Hadamard's inequality related to h-convex functions.

3. Fractional Integrals

In this section, we introduce a new class of fractional integrals and just consider one special case which is known in literature as Riemann-Liouville fractional integrals (see $[5, 7, 8, 10]$ $[5, 7, 8, 10]$ $[5, 7, 8, 10]$ $[5, 7, 8, 10]$ $[5, 7, 8, 10]$ $[5, 7, 8, 10]$) to find some hermite-hadamard's type inequalities for it by using generalized Fejér inequality obtained in previous section.

For $t \in [0,1] \setminus {\{\frac{1}{2}\}}$ consider a bifunction $G : [m_t(\mathcal{L}, \mathcal{R}), M_t(\mathcal{L}, \mathcal{R})] \times [m_t(\mathcal{L}, \mathcal{R}), M_t(\mathcal{L}, \mathcal{R})] \rightarrow$ R ⁺ ∪ {0} and define the following class of fractional integrals:

$$
\mathcal{F}_{m_t(\mathcal{L}, \mathcal{R})^+}[f](x) = \int_{m_t(\mathcal{L}, \mathcal{R})}^x G(x, u) f(u) du, \qquad x > m_t(\mathcal{L}, \mathcal{R})
$$

and

$$
\mathcal{F}_{M_t(\mathcal{L},\mathcal{R})^-}[f](x) = \int_x^{M_t(\mathcal{L},\mathcal{R})} G(x,u)f(u)du, \qquad x < M_t(\mathcal{L},\mathcal{R})
$$

if above integrals exist.

Now we discuss a special case of $\mathcal{F}_{m_t(\mathcal{L},\mathcal{R})^+}[f](x)$ and $\mathcal{F}_{M_t(\mathcal{L},\mathcal{R})^-}[f](x)$ and obtain some results in connection with Theorem [2.1.](#page-2-1)

In
$$
\mathcal{F}_{m_t(\mathcal{L}, \mathcal{R})^+}[f](x)
$$
 and $\mathcal{F}_{M_t(\mathcal{L}, \mathcal{R})^-}[f](x)$ for $\alpha > 0$, consider
\n
$$
G(x, u) = \frac{1}{\Gamma(\alpha)} |x - u|^{\alpha - 1}, \ x, u \in [m_t(\mathcal{L}, \mathcal{R}), M_t(\mathcal{L}, \mathcal{R})].
$$

So we achieve the following generalized Riemann-Liouville fractional integrals:

$$
\mathcal{J}_{m_t(\mathcal{L}, \mathcal{R})^+}^{\alpha} f(x) = \frac{1}{\Gamma(\alpha)} \int_{m_t(\mathcal{L}, \mathcal{R})}^x (x - u)^{\alpha - 1} f(u) du \quad x > m_t(\mathcal{L}, \mathcal{R})
$$

and

$$
\mathcal{J}_{M_t(\mathcal{L},\mathcal{R})^-}^{\alpha}f(x)=\frac{1}{\Gamma(\alpha)}\int_x^{M_t(\mathcal{L},\mathcal{R})}(u-x)^{\alpha-1}f(u)dt\quad M_t(\mathcal{L},\mathcal{R})
$$

Fractional integrals \mathcal{J}^{α}_{m} $\int_{m_t(\mathcal{L},\mathcal{R})^+}^{\alpha} f(x)$ and \mathcal{J}_{M}^{α} $\int_{M_t(\mathcal{L}, \mathcal{R})^-}^{\alpha} f(x)$ in special case $(t =$ 0, 1) reduce to $J^{\alpha}_{a+} f(x)$ and $J^{\alpha}_{b-} f(x)$ respectively, which are known as Riemann-Liouville fractional integrals. Now in Theorem [2.1,](#page-2-1) consider

$$
\omega(x) = \frac{(M_t(\mathcal{L}, \mathcal{R}) - x)^{\alpha - 1} + (x - m_t(\mathcal{L}, \mathcal{R}))^{\alpha - 1}}{\Gamma(\alpha)}, \quad x \in [m_t(\mathcal{L}, \mathcal{R}), M_t(\mathcal{L}, \mathcal{R})].
$$

It is not hard to see that w is symmetric on $[m_t(\mathcal{L}, \mathcal{R}), M_t(\mathcal{L}, \mathcal{R})]$ with respect to $\frac{a+b}{2}$ and also nonnegative. Also the following results hold:

$$
\int_{m_t(\mathcal{L}, \mathcal{R})}^{M_t(\mathcal{L}, \mathcal{R})} \omega(x) dx = \frac{2\big(M_t(\mathcal{L}, \mathcal{R}) - m_t(\mathcal{L}, \mathcal{R})\big)^{\alpha}}{\Gamma(\alpha + 1)} = \frac{2(b - a)^{\alpha}|1 - 2t|^{\alpha}}{\Gamma(\alpha + 1)},
$$
\n
$$
\int_a^b f(x)\omega(x) dx - \mathcal{M}_f^{\omega}(t) = \mathcal{J}_{m_t(\mathcal{L}, \mathcal{R})^+}^{\alpha}[f](M_t(\mathcal{L}, \mathcal{R})) + \mathcal{J}_{M_t(\mathcal{L}, \mathcal{R})^-}^{\alpha}[f](m_t(\mathcal{L}, \mathcal{R})),
$$
\nand

$$
\int_0^1 h(s)[\omega \circ A_s](m_t(\mathcal{L}, \mathcal{R}), M_t(\mathcal{L}, \mathcal{R}))ds = (M_t(\mathcal{L}, \mathcal{R}) - m_t(\mathcal{L}, \mathcal{R}))^{\alpha - 1} \int_0^1 H(s)s^{\alpha - 1}ds.
$$

Above results altogether imply that:

$$
\frac{1}{h(\frac{1}{2})}f\left(\frac{a+b}{2}\right) \leq \frac{\Gamma(\alpha+1)}{(b-a)^{\alpha}|1-2t|^{\alpha}} \left[\mathcal{J}^{\alpha}_{m_t(\mathcal{L},\mathcal{R})^+}[f](M_t(\mathcal{L},\mathcal{R})) + \mathcal{J}^{\alpha}_{M_t(\mathcal{L},\mathcal{R})^-}[f](m_t(\mathcal{L},\mathcal{R}))\right]
$$
\n
$$
\leq \alpha[f \circ \mathcal{L}(t) + f \circ \mathcal{R}(t)] \int_0^1 H(s) s^{\alpha-1} ds,
$$
\n(3.1)

for $t \in [0,1] \setminus \{\frac{1}{2}\}.$

In the case that $h(s) = s$, from [\(3.1\)](#page-5-0) we reach the following inequality which is generalization of inequality (2.1) obtained in $[12]$:

$$
f\left(\frac{a+b}{2}\right) \leq \frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}|1-2t|^{\alpha}} \left[\mathcal{J}_{m_t(\mathcal{L},\mathcal{R})^+}^{\alpha}[f](M_t(\mathcal{L},\mathcal{R})) + \mathcal{J}_{M_t(\mathcal{L},\mathcal{R})^-}^{\alpha}[f](m_t(\mathcal{L},\mathcal{R}))\right]
$$

$$
\leq \frac{f \circ \mathcal{L}(t) + f \circ \mathcal{R}(t)}{2}.
$$

Also for $\alpha = 1$, we obtain a generalization of inequality (2.1) presented in [\[11\]](#page-6-4):

$$
\frac{1}{2h(\frac{1}{2})}f\Big(\frac{a+b}{2}\Big)\leq \frac{1}{(b-a)|1-2t|}\int_{m_t(\mathcal{L},\mathcal{R})}^{M_t(\mathcal{L},\mathcal{R})}f(x)dx\leq \left[f\circ \mathcal{L}(t)+f\circ \mathcal{R}(t)\right]\int_0^1h(s)ds.
$$

4. Refinements for Hermite-Hadamard's Inequality by MONOTONE FUNCTIONS

In this section, we obtain some refinements for Hermite-Hadamard's inequality by the use of fractional integrals discussed in previous section provided that considered functions are nonnegative and monotone. We focus on Riemann-Liouville fractional integrals but results can be extended to many classes of fractional integrals. We need the following result which is a consequence of Theorem 1 in $[1]$ (see also $[3, 6]$ $[3, 6]$).

Theorem 4.1. If f_1 and f_2 are nonnegative increasing functions on $[0, 1]$, Then

$$
\int_0^1 f_1(x)dx \int_0^1 f_2(x)dx \le \int_0^1 f_1(x)f_2(x)dx.
$$

Here we give some refinements for Hermite-Hadamard's inequality by the use of fractional integrals for h-convex functions:

Theorem 4.2. Suppose that $f : [a, b] \to \mathbb{R}$ is an integrable h-convex function and $t \in [0,1] \setminus \{\frac{1}{2}\}.$ Then

(i) For $\alpha \geq 1$, the following inequality holds if f is nonnegative and increasing

$$
\frac{1}{2h(\frac{1}{2})}f\left(\frac{a+b}{2}\right) \le \frac{1}{|1-2t|(b-a)} \int_{m_t(\mathcal{L}, \mathcal{R})}^{M_t(\mathcal{L}, \mathcal{R})} f(u) du \tag{4.1}
$$

$$
\leq \frac{\Gamma(\alpha+1)}{2|1-2t|^{\alpha}(b-a)^{\alpha}} \left[\mathcal{J}_{m_t(\mathcal{L},\mathcal{R})^+}^{\alpha}[f](M_t(\mathcal{L},\mathcal{R})) + \mathcal{J}_{M_t(\mathcal{L},\mathcal{R})^-}^{\alpha}[f](m_t(\mathcal{L},\mathcal{R})) \right]
$$

$$
\leq \alpha \left[\frac{f \circ \mathcal{L}(t) + f \circ \mathcal{R}(t)}{2} \right] \int_0^1 H(s) s^{\alpha-1} ds.
$$

(ii) For any $\alpha > 0$ we have

:

$$
\frac{1}{2h(\frac{1}{2})}f\left(\frac{a+b}{2}\right)
$$
\n
$$
\leq \frac{\Gamma(\alpha+1)}{2|1-2t|^{\alpha}(b-a)^{\alpha}} \left[\mathcal{J}_{m_t(\mathcal{L},\mathcal{R})}^{\alpha}+[f](M_t(\mathcal{L},\mathcal{R})) + \mathcal{J}_{M_t(\mathcal{L},\mathcal{R})}^{\alpha}[-[f](m_t(\mathcal{L},\mathcal{R}))]\right]
$$
\n
$$
\leq \frac{\alpha}{|1-2t|(b-a)} \int_{m_t(\mathcal{L},\mathcal{R})}^{M_t(\mathcal{L},\mathcal{R})} f(u) du.
$$
\n(4.2)

REFERENCES

- 1. R. Ahlswede and D. E. Daykin, Integrals inequalities for increasing functions, Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press, 86(3) (1979), 391–394.
- 2. M. Bombardelli and S. Varošanec, Properties of h-convex functions related to the Hermite-Hadamard-Fejér inequalities, Comput. Math. Appl. 58 (2009) 1869-1877.
- 3. P. L. Chebyshev, Sur less expressions approximatives des intégrales définies par les autres prises entre les mˆemes limites, Proc. Math. Soc. Charkov, 2 (1882), 93–98 (in Russian).
- 4. L. Fejér, Über die fourierreihen, II, Math. Naturwise. Anz Ungar. Akad. Wiss. 24 (1906), 369–390.
- 5. R. Gorenflo and F. Mainardi, Fractional Calculus, Integral and Differential Equations of Fractional Order, Springer Verlag, Wien and New York, (1997), 223–276.
- 6. G. H. Hardy, J. E. Littlewood and G. Pólya, *Inequalities*, Cambridge University Press, Cambridge, (1959).
- 7. A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, Netherlands, 2006.
- 8. V. Kiryakova, Generalized Fractional Calculus and Applications, John Wiley & Sons Inc., New York, (1994).
- 9. A. W. Robert and D. E. Varbeg, Convex Functions, Academic Press, New York and London (1973).
- 10. S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Amsterdam, (1993).
- 11. M. Z. Sarikaya, A. Saglam and H. Yildirim, On some Hadamard-type inequalities for h-Convex functions, J. Math. Ineq. 2(3) (2008), 335–341.
- 12. M. Z. Sarikaya, E. Set, H. Yaldiz and N. Başak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model. 57 (2013), 2403–2407.
- 13. S. Varošanec, On h-convexity, J. Math. Anal. Appl. 326 (2007), 303-311.