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Abstract. Some new and generalized results related to the Euler’s beta
and gamma functions are presented by the use of generalized Fejér’s
Inequality.

1. Introduction and Preliminaries

Lipót Fejér (1880-1959) in 1906 [4], while studying trigonometric poly-
nomials, discovered the following integral inequalities which later became
known as Fejér’s inequality (in some references is separated to the left and
right):

F
(a+ b

2

)∫ b

a
G(x)dx ≤

∫ b

a
F(x)G(x)dx ≤ F(a) + F(b)

2

∫ b

a
G(x)dx, (1.1)

where F is a convex function ([6]) in the interval (a, b) and G is a positive
function in the same interval such that

G(a+ t) = G(b− t), 0 ≤ t ≤ a+ b

2
,

i.e., y = G(x) is a symmetric curve with respect to the straight line which
contains the point (a+b

2 , 0) and is normal to the x-axis. In fact the Fejér’s
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inequality (1.1), is the weighted version of celebrated Hermite-Hadamard’s
inequality for convex function f : [a, b] → R:

F
(a+ b

2

)
≤ 1

b− a

∫ b

a
F(x)dx ≤ F(a) + F(b)

2
. (1.2)

In this paper some new and generalized results related to the Euler’s beta
and gamma functions are presented by the use of generalized Fejér’s Inequal-
ity. Also we use the concept of h-convexity introduced by S. Varošanec in
2006 ([9]):

Definition 1.1. We say that a non-negative function f : I ⊆ R → R is h-
convex or f ∈ SX(h, I), if for non-negative function h : (0, 1) ⊆ J ⊆ R → R
(h ̸≡ 0), all x, y ∈ I and α ∈ (0, 1) we have

F(αx+ (1− α)y) ≤ h(α)F(x) + h(1− α)F(y).

f is said to be h-concave or f ∈ SV (h, I), If above inequality is reversed.

The following result presents a new and generalized type of the celebrated
Fejér’s inequality in connection with h-convex functions.

Theorem 1.2. Consider two integrable functions f : [a, b] → R and w :
[a, b] → R+ ∪ {0} such that f is h-convex and ω is symmetric with respect
to a+b

2 . For all t ∈ [0, 1], the following inequality hold:

1

2h(12)
f
(a+ b

2

)∫ Mt(L,R)

mt(L,R)
ω(x)dx ≤

∫ Mt(L,R)

mt(L,R)
f(x)ω(x)dx (1.3)

≤ |R(t)− L(t)|[f ◦ L](t) + [f ◦ R](t)

(L(t)−R(t))

∫ L(t)

R(t)
h

(
x−R(t)

L(t)−R(t)

)
ω(x)dx

=
|R(t)− L(t)|

(
[f ◦ L](t) + [f ◦ R](t)]

)
(R(t)− L(t))

∫ R(t)

L(t)
h

(
x− L(t)

R(t)− L(t)

)
ω(x)dx,

where

mt(L,R) = min{L(t),R(t)},Mt(L,R) = max{L(t),R(t)}

and L(t) : [0, 1] → [a, b], R(t) : [0, 1] → [a, b] are considered as the following:

L(t) = tb+ (1− t)a,R(t) = ta+ (1− t)b

for any t ∈ [0, 1].

Inequality (1.3) is a generalization of many Fejér’s type inequalities ob-
tained for h-convex functions in literature. However if we set h(s) = s in
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(1.3), then the following inequality holds:

f
(a+ b

2

)∫ Mt(L,R)

mt(L,R)
ω(x)dx ≤

∫ Mt(L,R)

mt(L,R)
f(x)ω(x)dx (1.4)

≤ [f ◦ L](t) + [f ◦ R](t)

|R(t)− L(t)|

∫ R(t)

L(t)
(x− L(t))ω(x)dx

=
[f ◦ L](t) + [f ◦ R](t)

|L(t)−R(t)|

∫ L(t)

R(t)
(x−R(t))ω(x)dx,

2. Gamma and Beta Function

In this section, we present some inequalities and results related to gamma
and beta functions. Specially by considering appropriate functions in Theo-
rem 1.2 along with some calculations, we give a simple proof for well known
Stirling’s formula as well.
The Euler’s integral of the second kind i.e. Gamma function [2] is defined as:

Γ(x) =

∫ ∞

0
tx−1e−tdt Re(x) > 0.

Consider the function f(x) = lnΓ(x), x ∈ (0,+∞) which is convex (Γ(x) is
log-convex). To see this (see also [1]), we should have

(ln Γ)′′(x) =
Γ′′(x)Γ(x)− (Γ′(x))2

(Γ(x))2
> 0,

which happens by using Cauchy-Schwarz inequality [8], for

< f, g >=

∫ ∞

0
f(t)g(t)tx−1e−tdt, (f(t) = ln(t), g ≡ 1),

and the fact that

Γ(n)(x) =

∫ ∞

0
tx−1e−t[ln(t)]ndt. (nth derivative)

Now in Theorem 1.2, consider h(s) = s, t = 0, 1, b = a+ 1 for a ∈ (0,+∞)
and symmetric function ω : [a, a+1] → (0,+∞) with respect to a+ 1

2 . Then
we obtain the following inequality:

Γ(a+
1

2
) ≤ exp

( 1

K

∫ a+1

a
ω(x) ln Γ(x)dx

)
≤

√
Γ(a)Γ(a+ 1), (2.1)

where K =
∫ a+1
a ω(x)dx. In special case for ω ≡ 1, by the Raabe’s formula

[5], i.e. ∫ a+1

a
ln Γ(x)dx = ln

√
2π + a ln(a)− a,

and inequality (2.1) we have

Γ(a+
1

2
) ≤

√
2π

(a
e

)a ≤
√

Γ(a)Γ(a+ 1), (2.2)



4 M. ROSTAMIAN DELAVAR

for any a ∈ (0,+∞). By applying Wendel’s inequality ([10]), i.e.(
a

a+ s

)1−s

≤ Γ(a+ s)

asΓ(a)
≤ 1,

in (2.2) for s = 1
2 , we get to

√
a

a+ 1
2

≤
Γ(a+

1

2
)

a
1
2Γ(a)

≤

√
2πa

(a
e

)r
Γ(a+ 1)

≤ 1. (2.3)

So two results can be extracted from inequality (2.3) by using squeeze the-
orem [7]. The First is

lim
a→∞

Γ(a+ 1
2)

a
1
2Γ(a)

= 1,

and the second is generalization of Stirling’s formula [3],

Γ(a+ 1) ≈
√
2πa

(a
e

)a
as a → ∞.

For the case that a ∈ N, we recapture the classic Stirling’s formula:

a! ≈
√
2πa

(a
e

)a
as a → ∞.

The Euler’s integral of the first kind is known as beta function [1]:

β(x, y) =

∫ 1

0
tx−1(1− t)y−1dt, Re(x) > 0, Re(y) > 0.

To obtain some results in connection with beta function by the use of Fejér’s
inequality consider

f(x) =
(
x−mt(L,R)

)r
, 0 < mt(L,R) ≤ x ≤ Mt(L,R), r ∈ [1,∞);

ω(x) =

(
Mt(L,R)− x

)P−1(
x−mt(L,R)

)P−1

(Mt(L,R)−mt(L,R))p
, 0 < mt(L,R) ≤ x ≤ Mt(L,R);

h(s) = sk, 0 ≤ k ≤ 1, s > 0,

where 0 < a < b, p > 0 and t ∈ [0, 1]\{1
2}. From example 7 in [9], we deduce

that f is a h-convex function on [mt(L,R),Mt(L,R)]. Also it is not hard to
see that ω is symmetric on [mt(L,R),Mt(L,R)] with respect to a+b

2 . The
following results hold:∫ Mt(L,R)

mt(L,R)
ω(x)dx =

(
Mt(L,R)−mt(L,R)

)p−1
∫ 1

0
xp−1(1− x)p−1dx

=
(
Mt(L,R)−mt(L,R)

)p−1
β(p, p),
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a
f(x)ω(x)dx−Mω

f (t) =

∫ Mt(L,R)

mt(L,R)
f(x)ω(x)dx

=

(
Mt(L,R)−mt(L,R)

)2p+r−1(
Mt(L,R)−mt(L,R)

)p ∫ 1

0
xp−1(1− x)p+r−1dx

=
(
Mt(L,R)−mt(L,R)

)p+r−1
β(p, p+ r).

Also

f
(a+ b

2

)
=

(a+ b

2
−mt(L,R)

)r
=

(Mt(L,R) +mt(L,R)

2
−mt(L,R)

)r

=

(
Mt(L,R)−mt(L,R)

)r
2r

.

Note that

[f ◦ L](t) + [f ◦ R](t) =
(
Mt(L,R)−mt(L,R)

)r
.

It follows with some calculations that

[ω ◦As](L(t),R(t))ds = ω
(
sL(t) + (1− s)R(t)

)
=

(
Mt(L,R)− (sL(t) + (1− s)R(t))

)p−1(
sL(t) + (1− s)R(t)−mt(L,R)

)p−1(
Mt(L,R)−mt(L,R)

)p
=

(
Mt(L,R)−mt(L,R)

)p−2
sp−1(1− s)p−1,

and so∫ 1

0
h(s)[ω ◦As](L(t),R(t))ds =

(
Mt(L,R)−mt(L,R)

)p−2
∫ 1

0
sk+p−1(1− s)p−1ds

=
(
Mt(L,R)−mt(L,R)

)p−2
β(k + p, p).

Finally by the use of above results and Theorem 1.2, we obtain that

1

2(12)
k
.

(
Mt(L,R)−mt(L,R)

)r
2r

(
Mt(L,R)−mt(L,R)

)p−1
β(p, p)

≤
(
Mt(L,R)−mt(L,R)

)p+r−1
β(p, p+ r)

≤
(
Mt(L,R)−mt(L,R)

)r+1(
Mt(L,R)−mt(L,R)

)p−2
β(k + p, p),

which implies the following inequalities related to beta function:

2k−r−1β(p, p) ≤ tβ(p, p+ r) + (1− t)2k−r−1β(p, p) ≤ β(p, p+ r) ≤ β(k + p, p),
(2.4)

for t ∈ [0, 1] \ {1
2}, 0 ≤ k ≤ 1 and r ∈ [1,∞).

Remark 2.1. For the case that f(x) =
(
Mt(L,R) − x

)r
, with the same

argument as above we recapture (2.4) because of the fact β(p, p + r) =
β(p+ r, p).
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In special case if we set k = 1 and t = 0, 1, we get

1

2r
β(p, p) ≤ β(p+ r, p) ≤ β(1 + p, p) =

1

2
β(p, p), (2.5)

for p > 0 and r ∈ [1,∞). From (2.5) and the characterization B(x, y) =
Γ(x)Γ(y)
Γ(x+y) we obtain that

1

2r
≤ Γ(2p)Γ(p+ r)

Γ(p)Γ(2p+ r)
≤ 1

2
,

for p > 0 and r ∈ [1,∞). In more special case for any p > 0, we have the
following result:

1

2
Γ(p)Γ(2p+ 1) = Γ(2p)Γ(p+ 1).
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