

APPLICATIONS OF FEJÉR'S INEQUALITY IN CONNECTION WITH EULER'S BETA AND GAMMA FUNCTIONS

MOHSEN ROSTAMIAN DELAVAR[∗]

Department of Mathematics, Faculty of Basic Sciences, University of Bojnord, Bojnord, Iran m.rostamian@ub.ac.ir

Abstract. Some new and generalized results related to the Euler's beta and gamma functions are presented by the use of generalized Fejér's Inequality.

1. Introduction and Preliminaries

Lipót Fejér (1880-1959) in 1906 $[4]$, while studying trigonometric polynomials, discovered the following integral inequalities which later became known as Fejér's inequality (in some references is separated to the left and right):

$$
\mathcal{F}\left(\frac{a+b}{2}\right)\int_{a}^{b}\mathcal{G}(x)dx \le \int_{a}^{b}\mathcal{F}(x)\mathcal{G}(x)dx \le \frac{\mathcal{F}(a) + \mathcal{F}(b)}{2}\int_{a}^{b}\mathcal{G}(x)dx, \tag{1.1}
$$

where F is a convex function ([\[6\]](#page-5-1)) in the interval (a, b) and G is a positive function in the same interval such that

$$
\mathcal{G}(a+t) = \mathcal{G}(b-t), \quad 0 \le t \le \frac{a+b}{2},
$$

i.e., $y = \mathcal{G}(x)$ is a symmetric curve with respect to the straight line which contains the point $(\frac{a+b}{2}, 0)$ and is normal to the x-axis. In fact the Fejér's

²⁰²⁰ Mathematics Subject Classification. Primary 26D15; Secondary 26A33

Key words and phrases. Fejér's inequality, Euler's beta and gamma functions.

[∗] Speaker.

inequality (1.1) , is the weighted version of celebrated Hermite-Hadamard's inequality for convex function $f : [a, b] \to \mathbb{R}$:

$$
\mathcal{F}\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b \mathcal{F}(x)dx \le \frac{\mathcal{F}(a) + \mathcal{F}(b)}{2}.
$$
 (1.2)

In this paper some new and generalized results related to the Euler's beta and gamma functions are presented by the use of generalized Fejer's Inequality. Also we use the concept of h-convexity introduced by S. Varo $\check{\sigma}$ sanec in 2006 ([\[9\]](#page-5-2)):

Definition 1.1. We say that a non-negative function $f: I \subseteq \mathbb{R} \to \mathbb{R}$ is hconvex or $f \in SX(h, I)$, if for non-negative function $h : (0, 1) \subseteq J \subseteq \mathbb{R} \to \mathbb{R}$ $(h \not\equiv 0)$, all $x, y \in I$ and $\alpha \in (0, 1)$ we have

$$
\mathcal{F}(\alpha x + (1 - \alpha)y) \le h(\alpha)\mathcal{F}(x) + h(1 - \alpha)\mathcal{F}(y).
$$

f is said to be h-concave or $f \in SV(h, I)$, If above inequality is reversed.

The following result presents a new and generalized type of the celebrated Fejer's inequality in connection with h -convex functions.

Theorem 1.2. Consider two integrable functions $f : [a, b] \rightarrow \mathbb{R}$ and w: $[a, b] \to \mathbb{R}^+ \cup \{0\}$ such that f is h-convex and ω is symmetric with respect to $\frac{a+b}{2}$. For all $t \in [0,1]$, the following inequality hold:

$$
\frac{1}{2h(\frac{1}{2})}f\left(\frac{a+b}{2}\right)\int_{m_t(\mathcal{L},\mathcal{R})}^{M_t(\mathcal{L},\mathcal{R})}\omega(x)dx \le \int_{m_t(\mathcal{L},\mathcal{R})}^{M_t(\mathcal{L},\mathcal{R})}f(x)\omega(x)dx \qquad (1.3)
$$
\n
$$
\le \frac{|\mathcal{R}(t) - \mathcal{L}(t)|[f \circ \mathcal{L}](t) + [f \circ \mathcal{R}](t)}{(\mathcal{L}(t) - \mathcal{R}(t))}\int_{\mathcal{R}(t)}^{\mathcal{L}(t)}h\left(\frac{x - \mathcal{R}(t)}{\mathcal{L}(t) - \mathcal{R}(t)}\right)\omega(x)dx
$$
\n
$$
= \frac{|\mathcal{R}(t) - \mathcal{L}(t)|\left([f \circ \mathcal{L}](t) + [f \circ \mathcal{R}](t)]\right)}{(\mathcal{R}(t) - \mathcal{L}(t))}\int_{\mathcal{L}(t)}^{\mathcal{R}(t)}h\left(\frac{x - \mathcal{L}(t)}{\mathcal{R}(t) - \mathcal{L}(t)}\right)\omega(x)dx,
$$
\n(1.3)

where

 $m_t(\mathcal{L}, \mathcal{R}) = \min\{\mathcal{L}(t), \mathcal{R}(t)\}, M_t(\mathcal{L}, \mathcal{R}) = \max\{\mathcal{L}(t), \mathcal{R}(t)\}\$

and $\mathcal{L}(t) : [0,1] \to [a,b], \mathcal{R}(t) : [0,1] \to [a,b]$ are considered as the following:

$$
\mathcal{L}(t) = tb + (1-t)a, \mathcal{R}(t) = ta + (1-t)b
$$

for any $t \in [0, 1]$.

Inequality (1.3) is a generalization of many Fejer's type inequalities obtained for h-convex functions in literature. However if we set $h(s) = s$ in [\(1.3\)](#page-1-0), then the following inequality holds:

$$
f\left(\frac{a+b}{2}\right) \int_{m_t(\mathcal{L}, \mathcal{R})}^{M_t(\mathcal{L}, \mathcal{R})} \omega(x) dx \le \int_{m_t(\mathcal{L}, \mathcal{R})}^{M_t(\mathcal{L}, \mathcal{R})} f(x) \omega(x) dx \qquad (1.4)
$$

$$
\le \frac{[f \circ \mathcal{L}](t) + [f \circ \mathcal{R}](t)}{|\mathcal{R}(t) - \mathcal{L}(t)|} \int_{\mathcal{L}(t)}^{\mathcal{R}(t)} (x - \mathcal{L}(t)) \omega(x) dx
$$

$$
= \frac{[f \circ \mathcal{L}](t) + [f \circ \mathcal{R}](t)}{|\mathcal{L}(t) - \mathcal{R}(t)|} \int_{\mathcal{R}(t)}^{\mathcal{L}(t)} (x - \mathcal{R}(t)) \omega(x) dx,
$$

2. Gamma and Beta Function

In this section, we present some inequalities and results related to gamma and beta functions. Specially by considering appropriate functions in Theorem [1.2](#page-1-1) along with some calculations, we give a simple proof for well known Stirling's formula as well.

The Euler's integral of the second kind i.e. Gamma function [\[2\]](#page-5-3) is defined as:

$$
\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt \qquad Re(x) > 0.
$$

Consider the function $f(x) = \ln \Gamma(x), x \in (0, +\infty)$ which is convex $(\Gamma(x))$ is log-convex). To see this (see also $[1]$), we should have

$$
(\ln \Gamma)''(x) = \frac{\Gamma''(x)\Gamma(x) - (\Gamma'(x))^2}{(\Gamma(x))^2} > 0,
$$

which happens by using Cauchy-Schwarz inequality [\[8\]](#page-5-5), for

$$
\langle f, g \rangle = \int_0^\infty f(t)g(t)t^{x-1}e^{-t}dt, \qquad (f(t) = \ln(t), \ g \equiv 1),
$$

and the fact that

$$
\Gamma^{(n)}(x) = \int_0^\infty t^{x-1} e^{-t} [ln(t)]^n dt.
$$
 (nth derivative)

Now in Theorem [1.2,](#page-1-1) consider $h(s) = s, t = 0, 1, b = a + 1$ for $a \in (0, +\infty)$ and symmetric function $\omega : [a, a+1] \to (0, +\infty)$ with respect to $a+\frac{1}{2}$ $\frac{1}{2}$. Then we obtain the following inequality:

$$
\Gamma(a+\frac{1}{2}) \le \exp\left(\frac{1}{\mathcal{K}} \int_{a}^{a+1} \omega(x) \ln \Gamma(x) dx\right) \le \sqrt{\Gamma(a)\Gamma(a+1)},\tag{2.1}
$$

where $\mathcal{K} = \int_{a}^{a+1} \omega(x) dx$. In special case for $\omega \equiv 1$, by the Raabe's formula $[5]$, i.e.

$$
\int_{a}^{a+1} \ln \Gamma(x) dx = \ln \sqrt{2\pi} + a \ln(a) - a,
$$

and inequality [\(2.1\)](#page-2-0) we have

$$
\Gamma(a+\frac{1}{2}) \le \sqrt{2\pi} \left(\frac{a}{e}\right)^a \le \sqrt{\Gamma(a)\Gamma(a+1)},\tag{2.2}
$$

for any $a \in (0, +\infty)$. By applying Wendel's inequality ([\[10\]](#page-5-7)), i.e.

$$
\left(\frac{a}{a+s}\right)^{1-s} \le \frac{\Gamma(a+s)}{a^s \Gamma(a)} \le 1,
$$

in [\(2.2\)](#page-2-1) for $s = \frac{1}{2}$ $\frac{1}{2}$, we get to

$$
\sqrt{\frac{a}{a+\frac{1}{2}}} \le \frac{\Gamma(a+\frac{1}{2})}{a^{\frac{1}{2}}\Gamma(a)} \le \frac{\sqrt{2\pi a}(\frac{a}{e})^r}{\Gamma(a+1)} \le 1.
$$
\n(2.3)

So two results can be extracted from inequality (2.3) by using squeeze theorem [\[7\]](#page-5-8). The First is

$$
\lim_{a \to \infty} \frac{\Gamma(a + \frac{1}{2})}{a^{\frac{1}{2}} \Gamma(a)} = 1,
$$

and the second is generalization of Stirling's formula [\[3\]](#page-5-9),

$$
\Gamma(a+1) \approx \sqrt{2\pi a} \left(\frac{a}{e}\right)^a
$$
 as $a \to \infty$.

For the case that $a \in \mathbb{N}$, we recapture the classic Stirling's formula:

$$
a! \approx \sqrt{2\pi a} \left(\frac{a}{e}\right)^a
$$
 as $a \to \infty$.

The Euler's integral of the first kind is known as beta function [\[1\]](#page-5-4):

$$
\beta(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt, \qquad Re(x) > 0, Re(y) > 0.
$$

To obtain some results in connection with beta function by the use of Fejer's inequality consider

$$
\begin{cases}\nf(x) = (x - m_t(\mathcal{L}, \mathcal{R}))^r, \ 0 < m_t(\mathcal{L}, \mathcal{R}) \leq x \leq M_t(\mathcal{L}, \mathcal{R}), r \in [1, \infty);\ \\
\omega(x) = \frac{\left(M_t(\mathcal{L}, \mathcal{R}) - x\right)^{P-1}(x - m_t(\mathcal{L}, \mathcal{R}))^{P-1}}{(M_t(\mathcal{L}, \mathcal{R}) - m_t(\mathcal{L}, \mathcal{R}))^p}, \ 0 < m_t(\mathcal{L}, \mathcal{R}) \leq x \leq M_t(\mathcal{L}, \mathcal{R}); \\
h(s) = s^k, \ 0 \leq k \leq 1, s > 0,\n\end{cases}
$$

where $0 < a < b, p > 0$ and $t \in [0, 1] \setminus \{\frac{1}{2}\}.$ From example 7 in [\[9\]](#page-5-2), we deduce that f is a h-convex function on $[m_t(\mathcal{L}, \mathcal{R}), M_t(\mathcal{L}, \mathcal{R})]$. Also it is not hard to see that ω is symmetric on $[m_t(\mathcal{L}, \mathcal{R}), M_t(\mathcal{L}, \mathcal{R})]$ with respect to $\frac{a+b}{2}$. The following results hold:

$$
\int_{m_t(\mathcal{L}, \mathcal{R})}^{M_t(\mathcal{L}, \mathcal{R})} \omega(x) dx = \left(M_t(\mathcal{L}, \mathcal{R}) - m_t(\mathcal{L}, \mathcal{R}) \right)^{p-1} \int_0^1 x^{p-1} (1-x)^{p-1} dx
$$

= $\left(M_t(\mathcal{L}, \mathcal{R}) - m_t(\mathcal{L}, \mathcal{R}) \right)^{p-1} \beta(p, p),$

$$
\int_{a}^{b} f(x)\omega(x)dx - \mathcal{M}_{f}^{\omega}(t) = \int_{m_{t}(\mathcal{L}, \mathcal{R})}^{M_{t}(\mathcal{L}, \mathcal{R})} f(x)\omega(x)dx
$$

$$
= \frac{(M_{t}(\mathcal{L}, \mathcal{R}) - m_{t}(\mathcal{L}, \mathcal{R}))^{2p+r-1}}{(M_{t}(\mathcal{L}, \mathcal{R}) - m_{t}(\mathcal{L}, \mathcal{R}))^{p}} \int_{0}^{1} x^{p-1}(1-x)^{p+r-1}dx
$$

$$
= (M_{t}(\mathcal{L}, \mathcal{R}) - m_{t}(\mathcal{L}, \mathcal{R}))^{p+r-1}\beta(p, p+r).
$$

Also

$$
f\left(\frac{a+b}{2}\right) = \left(\frac{a+b}{2} - m_t(\mathcal{L}, \mathcal{R})\right)^r = \left(\frac{M_t(\mathcal{L}, \mathcal{R}) + m_t(\mathcal{L}, \mathcal{R})}{2} - m_t(\mathcal{L}, \mathcal{R})\right)^r
$$

=
$$
\frac{(M_t(\mathcal{L}, \mathcal{R}) - m_t(\mathcal{L}, \mathcal{R}))^r}{2^r}.
$$

Note that

$$
[f\circ\mathcal{L}](t) + [f\circ\mathcal{R}](t) = (M_t(\mathcal{L}, \mathcal{R}) - m_t(\mathcal{L}, \mathcal{R}))^r.
$$

It follows with some calculations that

$$
[\omega \circ A_s](\mathcal{L}(t), \mathcal{R}(t))ds = \omega(s\mathcal{L}(t) + (1 - s)\mathcal{R}(t))
$$

=
$$
\frac{(M_t(\mathcal{L}, \mathcal{R}) - (s\mathcal{L}(t) + (1 - s)\mathcal{R}(t)))^{p-1}(s\mathcal{L}(t) + (1 - s)\mathcal{R}(t) - m_t(\mathcal{L}, \mathcal{R}))^{p-1}}{(M_t(\mathcal{L}, \mathcal{R}) - m_t(\mathcal{L}, \mathcal{R}))^p}
$$

=
$$
(M_t(\mathcal{L}, \mathcal{R}) - m_t(\mathcal{L}, \mathcal{R}))^{p-2} s^{p-1} (1 - s)^{p-1},
$$

and so

$$
\int_0^1 h(s)[\omega \circ A_s](\mathcal{L}(t), \mathcal{R}(t))ds = (M_t(\mathcal{L}, \mathcal{R}) - m_t(\mathcal{L}, \mathcal{R}))^{p-2} \int_0^1 s^{k+p-1} (1-s)^{p-1} ds
$$

= $(M_t(\mathcal{L}, \mathcal{R}) - m_t(\mathcal{L}, \mathcal{R}))^{p-2} \beta(k+p, p).$

Finally by the use of above results and Theorem [1.2,](#page-1-1) we obtain that

$$
\frac{1}{2(\frac{1}{2})^k} \cdot \frac{\left(M_t(\mathcal{L}, \mathcal{R}) - m_t(\mathcal{L}, \mathcal{R})\right)^r}{2^r} \left(M_t(\mathcal{L}, \mathcal{R}) - m_t(\mathcal{L}, \mathcal{R})\right)^{p-1} \beta(p, p)
$$
\n
$$
\leq \left(M_t(\mathcal{L}, \mathcal{R}) - m_t(\mathcal{L}, \mathcal{R})\right)^{p+r-1} \beta(p, p+r)
$$
\n
$$
\leq \left(M_t(\mathcal{L}, \mathcal{R}) - m_t(\mathcal{L}, \mathcal{R})\right)^{r+1} \left(M_t(\mathcal{L}, \mathcal{R}) - m_t(\mathcal{L}, \mathcal{R})\right)^{p-2} \beta(k+p, p),
$$

which implies the following inequalities related to beta function:

$$
2^{k-r-1}\beta(p,p) \le t\beta(p,p+r) + (1-t)2^{k-r-1}\beta(p,p) \le \beta(p,p+r) \le \beta(k+p,p),
$$
\n(2.4)

for $t \in [0, 1] \setminus \{\frac{1}{2}\}, 0 \le k \le 1$ and $r \in [1, \infty)$.

Remark 2.1. For the case that $f(x) = (M_t(\mathcal{L}, \mathcal{R}) - x)^r$, with the same argument as above we recapture [\(2.4\)](#page-4-0) because of the fact $\beta(p, p + r)$ = $\beta(p+r, p).$

In special case if we set $k = 1$ and $t = 0, 1$, we get

$$
\frac{1}{2^{r}}\beta(p,p) \le \beta(p+r,p) \le \beta(1+p,p) = \frac{1}{2}\beta(p,p),
$$
\n(2.5)

for $p > 0$ and $r \in [1, \infty)$. From (2.5) and the characterization $B(x, y) =$ $\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$ we obtain that

$$
\frac{1}{2^r} \le \frac{\Gamma(2p)\Gamma(p+r)}{\Gamma(p)\Gamma(2p+r)} \le \frac{1}{2},
$$

for $p > 0$ and $r \in [1, \infty)$. In more special case for any $p > 0$, we have the following result:

$$
\frac{1}{2}\Gamma(p)\Gamma(2p+1) = \Gamma(2p)\Gamma(p+1).
$$

REFERENCES

- 1. R. Beals and R. Wong, Special Functions: A Graduate Text, Cambridge University Press, Cambridge, (2010).
- 2. P. J. Davis, Leonhard Euler's integral: a historical profile of the gamma function, Am. Math. Mon. 66(10) (1959), 849–869.
- 3. J. Dutka, The early history of the factorial function, Arch. Hist. Exact Sci. 43(3) (1991), 225-–249.
- 4. L. Fejér, Uber die fourierreihen, II, Math. Naturwise. Anz Ungar. Akad. Wiss. 24 (1906), 369–390.
- 5. J. L. Raabe, Angen aherte bestimmung der factorenfolge 1.2.3.4.5... $n = \Gamma(1 + n)$ $\int x^n e^{-x} dx$, wenn n eine sehr grosse zahl ist, J. Reine Angew. Math. 25 (1843), 146– 159.
- 6. A. W. Robert and D. E. Varbeg, Convex Functions, Academic Press, New York and London (1973).
- 7. H. H. Sohrab, Basic Real Analysis (2nd ed.), Birkhäuser, (2003).
- 8. J. M. Steele, The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities, The Mathematical Association of America, (2004). .
- 9. S. Varošanec, On h -convexity, J. Math. Anal. Appl. **326** (2007), 303-311.
- 10. J. G. Wendel, Note on the gamma function, Am. Math. Mon. 55(9) (1948), 563-–564.