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Abstract. It is well known that dynamical systems are very useful
tools to study the viral disease such as HIV, HBV, HCV, Ebola and
Influenza. This paper deals with a mathematical model of the cell-
to-cell and the cell-free spread of HIV with both linear and nonlinear
functional responses and logistic target cell growth. The reproduction
number of each mode of transmission has been calculated and their sum
has been considered as the basic reproduction number. Based on the
values of the reproduction number, the local and global stability of the
rest points have been investigated.

1. Introduction

Over decades, human societies have been affected by human immunod-
eficiency virus (HIV). HIV viruses attack the body’s immune system and
destroy a type of target cells known as CD4+ T-cells. Studies have shown
that HIV infection in humans came from a type of chimpanzee in Africa.
Today, HIV infection is a contagious disease that can be transmitted from
person to person. If HIV is not treated, it can lead to acquired immun-
odeficiency syndrome (AIDS). Unfortunately, there is currently no effective
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cure and only with proper medical care patients may have a better quality
of life. The stages of HIV infection are as follows: acute HIV infection,
chronic HIV infection and AIDS. AIDS is a communicable disease and HIV
is the causative agent for AIDS which damages the ability of the body to
fight against diseases and leave it open to attack from usual innocuous infec-
tions ([2]). In recent years, some mathematical models have been proposed
to investigate the distribution of disease and to describe epidemic illnesses
related to AIDS ([3]).

Mathematical modeling involves breaking down a problem into its mea-
surable parts and representing those parts in the equations. Mathematical
models have been invaluable in the fight against Covid 19. They have been
used to determine the length of quarantine and school closures, to predict the
shortage of ventilators and to produce vaccines. The models used for each
of these problems were ready in 2020 thanks to years of basic research. The
most useful mathematical tools used throughout the epidemic, from classical
differential equations to newer techniques, were in many cases invented by
mathematicians who did not have a specific goal in mind, but ultimately
when we came up with Covid 19 encountered, they helped humanity a lot.
It is clear that the mathematicians who are doing basic research today are
laying the groundwork for combating the spread of future diseases.

Song and Neumann in [15] studied the spread of HIV by model

dT (t)

dt
= s− dT + aT (1− T

TM
)− βTV

1 + αV
,

dI(t)

dt
=

βTV

1 + αV
− δI,

dV (t)

dt
= pI − cV,

(1.1)

where T (t), I(t) and V (t) represent the number of target cells, the number
of infected cells and viral load of the virus, respectively. δ is the loss rate
constant of infective cells, p is virus production rate for infected cell, c is
the clearance rate constant of free viruses, s represents the rate at which
new T cells are created from the source within the body, rate of infection
is given by βTV , a is the maximum proliferation rate of target cells, TM is
the population density at which proliferation shuts off, d is the death rate
of T cells and α > 0 is constant for saturated mass action. In model (1.1)
the dynamics of HIV with the classical mathematical model with saturation
response of the infection rate was studied. Sufficient conditions on the pa-
rameters for the global stability of the infection-free and positive equilibria
were obtained. Also, they gave an existence result of an orbitally asymptotic
stable periodic solution.

Two dominant infection modes of HIV-1 are the cell-free infection, that is
the classical one, and cell-to-cell delivery which has been examined in recent
years. In the classical mode, infected cells spread viral components which
infect the new cell over a distance. In the cell-to-cell mode disease is spread
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through direct contact of infected cells with uninfected ones ([10]). Lai and
Zou in [11] considered a model containing two modes for HIV-1 infection
and spread, classical cell-free infection and direct cell-to-cell transmission.

Motivated by the works of Lai and Zou in [11] and Song and Neumann in
[15], in the present work, we shall study the following model of HIV infection
with logistic target cell growth and two predominant transmission. Using
the same notations as in [15], we investigate the model

dT (t)

dt
= s− dT + rT (1− T

TM
)− b1TV

1 + aV
− b2TI,

dI(t)

dt
=

b1TV

1 + aV
+ b2TI − δI,

dV (t)

dt
= hI − lV,

. (1.2)

The rest of the paper is organized as follows. Section 2 deals with some
basic results e.g., boundedness and non-negativity of the solutions, the basic
reproduction number and the existence of equilibria. The stability of the
equilibria are considered in section 3. Some of the results are illustrated
numerically in section 4.

2. Equilibria and basic results

In this section, the basic properties of the solutions of (1.2) will be pre-
sented. There exists an infection-free equilibrium E1(T1, 0, 0) where

T1 =
TM

2r

[
r − d+

√
(r − d)2 +

4rs

TM

]
,

which represents the state of system (1.2) without viruses. Considering
the activity of the virus in the body, it can be proven that there exists a
positive equilibrium like E2(T2, I2, V2). System (1.2) shows the interaction
of cell population in the body. Hence, the amount of cells should remain
positive and bounded. In the following, the positivity and the boundedness
of the solutions of (1.2) will be shown.

Theorem 2.1. Starting from non-negative initial points, all solutions of
(1.2) exist for all t > 0 and remain bounded and non-negative.

Proof. Since the functions in (1.2) are continuous and smooth, the existence
and uniqueness of solutions of (1.2) are established by Picard Theorem. To
prove the positivity of solutions, define

R3
+ = {(T, I, V ) ∈ R3 | T ≥ 0, I ≥ 0, V ≥ 0}.

For any solution in R3
+, it can be concluded that

Ṫ |T=0= s ≥ 0, İ |I=0=
b1TV

1 + aV
≥ 0, V̇ |V=0= hI ≥ 0.
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Due to the theorem by Nagumo in [13], the positivity of all solutions is
proven.

For the boundedness of solutions, let L(t) = T (t) + I(t). Therefore,

L̇ = s+ rT (1− T

TM
)− dT − δI = −dT − δI + rT − rT 2

TM
+ s ≤ −hL+M0,

where M0 = TMr2+4rs
4r and h = min{d, δ}. Hence, there exist M1 > 0 and

t1 > 0 such that L ≤ M1 for any t > t1. From the third equation of (1.2),
with the same way, we can findM2 > 0 as an upper bound for V (t). Now, let
M = max{M1,M2}. Obviously, T (t) ≤ M , I(t) ≤ M and V (t) ≤ M for all
large t. Therefore, the solutions are bounded and the proof is complete. □

To state our main results, the following definition will be needed.

Definition 2.2. The basic reproduction number R0 is defined as the ex-
pected number of secondary infections produced by an index case in a com-
pletely susceptible body cells.

According to the concept of next-generation matrix in Diekmann et al.
([5]) and the production number presented in van den Driessche and Wat-
mough ([19]), we can compute the basic reproduction number of (1.2) as

R0 = R01 +R02, where R01 =
b1h

lδ
T1, R02 =

b2
δ
T1,

where T1 =
(r − d+

√
∆

2r

)
TM and ∆ = (r − d)2 +

4rs

TM
.

Actually, to obtain R0, following the method of [6], first consider the
linearization of (1.2) around the infection-free equilibrium E1 as(

dγ1(t)
dt

dγ2(t)
dt

)
=

(
b2T1 b1T1

0 0

)(
γ1(t)
γ2(t)

)
−
(

δ 0
−h l

)(
γ1(t)
γ2(t)

)
,

where γ1(t) and γ2(t) represent the perturbation of I(t) and V (t) from E1,
respectively. Let Γ(0) = (γ1(0), γ2(0)) be the initial distribution. Therefore,
if there is no new infection, then the cell population will evolve e−UtΓ(0)

where U =

(
δ 0
−h l

)
. The total distribution of the new infectious cells

occurring at t = 0 is

L(Γ(0)) =

∫ ∞

0

(
β2T1 β1T1

0 0

)
e−Y tγ(0)dt =

(
b2T1 b1T1

0 0

)(
δ 0
−h l

)−1

Γ(0).

It follows from [17] that

R0 = ρ(L) = ρ(

(
b2T1 b1T1

0 0

) 1

δ
0

h

lδ

1

l

) = R01 +R02,

where ρ shows the spectral radius of the matrix.



HIV VIRAL INFECTION MODEL 5

By the values of R0, the local and the global stability of the equilibrium
points of (1.2) will be studied in the next sections.

Consider the set

Γ =

{
ξ ∈ [0, T1] | (n(T )−n(ξ))(T −ξ) < 0 for T ̸= ξ, T ∈ [0, T1]

}
, (2.1)

where n(T ) = s − dT + rT (1 − T
TM

). Substituting n(T ) in (2.1), Γ can be
written as

Γ =

{
ξ ∈ [0, T1] | d− r + r

(
T + ξ

TM

)
> 0 for T ̸= ξ, T ∈ [0, T1]

}
.

If Γ is nonempty, then there are cell densities at which the net growth
rate is lower than the net growth rates at lower densities yet higher than
the net growth rates at higher densities.

In the following, a theorem about the existence of the rest points of (1.2)
will be presented.

Theorem 2.3. System (1.2) has a unique infection-free equilibrium E1(T1, 0, 0)
if R0 ≤ 1. Except for E1, if R0 > 1, then (1.2) has a unique positive (en-
demic) equilibrium E2(T2, I2, V2) with T2 ∈ (0, T1) where

I2 =
l

h
V2 and V2 =

1

a

R0T2 − T1

T1 −R02T2
. (2.2)

Proof. The following relations hold at any equilibrium point.

n(T )− V f1(T, V )− If2(T ) = 0,

V f1(T, V ) + If2(T )− δI = 0,

hI − lV = 0,

where f1(T, V ) =
b1T

1 + aV
and f2(T ) = b2T . Therefore,

V =
h

l
I, I =

1

δ
n(T ) =

1

δ

(
s− dT + rT (1− T

TM
)

)
,

which implies that T ≤ T1. Consider the following function on [0, T1]:

G(T ) = n(T )

(
h

lδ
f1
(
T,

h

lδ
n(T )

)
+

1

δ
f2
(
T
)
− 1

)
.

We have G(0) = −s < 0 and G(T1) = 0. On the other hand,

G′(T1) = n′(T1)

(
h

lδ
f1
(
T1, 0

)
+

1

δ
f2
(
T1

)
− 1

)
= n′(T1)(R0 − 1).

Therefore, G′(T1) < 0 since n′(T1) < 0 and R0 > 1. By this argument,
there exists T2 ∈ (0, T1) such that G(T2) = 0. Thus, there exists positive
equilibrium E2(T2, I2, V2) with T2 ∈ (0, T1), I2 > 0 and V2 > 0.
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Suppose that there exists another equilibrium Ē2(T̄2, Ī2, V̄2). Without
loss of generality, we may assume that T̄2 < T2. Then, T2 ∈ Γ implies that
n(T̄2) > n(T2). From equilibrium conditions, we have

n(T2) = V2f1(T2, V2) + I2f2(T2) = δI2 =
lδ

h
V2,

n(T̄2) = V̄2f1(T̄2, V̄2) + Ī2f2(T̄2) = δĪ2 =
lδ

h
V̄2.

(2.3)

Therefore, Ī2 > I2 and V̄2 > V2 since n(T̄2) > n(T2). Computing the

derivatives of f1 and f2, we deduce that
∂f1
∂T

> 0,
∂f1
∂V

< 0 and f ′
2(T ) > 0.

Thus,

f1(T̄2, V̄2) < f1(T2, V̄2) < f1(T2, V2)

f2(T̄2) < f2(T2).

On the other hand, it follows from (2.3) that

f1(T2, V2) +
l

h
f2(T2) = f1(T̄2, V̄2) +

l

h
f2(T̄2) =

lδ

h
.

This is a contradiction, and therefore E2(T2, I2, V2) is the unique endemic
equilibrium of (1.2). □

Remark 2.4. By attention to (2.2), it can be concluded that the infected
equilibrium E2(T2, I2, V2) exists if and only if R0T2 > T1 > R02T2.

3.

In this section, the local asymptotic stability of equilibria of (1.2) will be
considered. Next, under certain conditions, the global asymptotic stability
of E1 will be investigated.

Theorem 3.1. If R0 < 1, then the infection-free equilibrium E1 is locally
asymptotically stable. If R0 > 1, then E1 is unstable.

Proof. The Jacobian matrix of (1.2) at E1 is given by

JE1 =

r − d− 2rT1
TM

−b2T1 −b1T1

0 b2T1 − δ b1T1

0 h −l

 . (3.1)

The characteristic polynomial of (3.1) is as(
λ− r + d+

2rT1

TM

)[
λ2 + (l + δ(1−R02))λ+ lδ(1−R0)

]
= 0. (3.2)

It is clear that equation (3.2) has a root as λ = r − d − 2rT1

TM
< 0. On the

other hand, if R0 < 1, then l + δ(1 −R02) > 0 and lδ(1 −R0) > 0. This
means that the roots of (3.2) have negative real part if R0 < 1. If R0 > 1,
let

f(λ) = λ2 + (l + δ(1−R02))λ+ lδ(1−R0). (3.3)
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In this case, f(0) = lδ(1 − R0) < 0 and limλ→+∞ f(λ) = +∞. From the
continuity of f on (−∞,+∞) and using Intermediate Value Theorem, it can
be concluded that equation (3.3) has at least one positive root. Hence, E1

is unstable when R0 > 1. □

Theorem 3.2. If R0 < 1, then E1(T1, 0, 0) is globally asymptotically stable.

Proof. From Theorem 3.1, we see that if R0 < 1, then all eigenvalues have
negative real parts. We need to show that limt→∞(T, I, V ) = (T1, 0, 0) where

T1 = TM
2r [r − d +

√
(r − d)2 + 4rs

TM
]. Define the following linear cooperative

system

d ¯I(t)

dt
= b1TM V̄ (t) + b2TM Ī(t)− δĪ(t),

d ¯V (t)

dt
= hĪ − lV̄ .

(3.4)

Suppose that λ0 be the principal eigenvalue associated with strictly positive
eigenvector ϵ0. It is clear that λ0 < 0. For Z > 0, let ( ¯I(t), ¯V (t)) = Zeλ0tϵ0
be a solution of (3.4). It is clear that T (t) ≤ TM and for t ≥ 0 we have

dI(t)

dt
≤ d ¯I(t)

dt
and

dV (t)

dt
≤ d ¯V (t)

dt
.

By choosing the appropriate Z > 0 and the comparison principal, it can
be concluded that (I(t), V (t)) ≤ Zeλ0tϵ0, and limt→∞(I(t), V (t)) = (0, 0).
According to the above calculations and first equation of (3.4), the following
equation can be obtained.

dT̄

dt
= s− dT̄ + rT̄ (1− T̄

TM
).

Finally, we conclude that limt→∞ T̄ (t) = T1.
It follows from Corollary 4.3 in [18], as asymptotic autonomous semi

flow theory, that limt→∞ T (t) = T1. Therefore, limt→∞(T (t), I(t), V (t)) =
(T1, 0, 0). □

In the following, the local stability of E2 will be presented.

Theorem 3.3. Suppose that

(i) R0 > 1,

(ii) b1hT2 + b2lT2 − δl+ la2V 2
2 (δ− b2T2) + (1+ aV2)

2

(
s

T2
+

rT2

TM

)[
s

T2
+

rT2

TM
+ δ + l − b2T2

]
+(1 + aV2)

[
1

δ + l − b2T2

(
s

T2
+

rT2

TM

)
+ 1

](
b1b2T2V2 + b22T2I2(1 +

aV2)
)
>

δl

h

[
b1hV2 + b2l(1 + aV2)

2

δ + l − b2T2

]
.

Then, the positive equilibrium E2(T2, I2, V2) is locally asymptotically stable.
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Proof. The Jacobian matrix of (1.2) at E2 is given by

JE2 =


r − d− 2rT2

TM
− b1V2

1 + aV2
− b2I2 −b2T2 − b1T2

(1 + aV2)2
b1V2

1 + aV2
+ b2I2 b2T2 − δ

b1T2

(1 + aV2)2

0 h −l

 .

For E2, the characteristics polynomial is

λ3 + p1λ
2 + p2λ+ p3 = 0, (3.5)

where the coefficients pi, i = 1, 2, 3 are:

p1 =
s

T2
+

rT2

TM
+ l +

δ

T1

(
T1 −R02T2

)
> 0,

p2 =

(
l +

δ

T1

(
T1 −R02T2

))( s

T2
+

rT2

TM

)
+ b2T2

(
b1V2

1 + aV2
+ b2I2

)
+

δl

T1(1 + aV2)2
(
R0T2 − T1 + a2V 2

2 (T1 −R02T2)
)
> 0,

p3 =
δl

T1(1 + aV2)2

(
s

T2
+

rT2

TM

)(
R0T2 − T1 + a2V 2

2 (T1 −R02T2)
)

+

(
b1hT2 + b2lT2(1 + aV2)

2
)(
b1V2 + b2I2(1 + aV2)

)
(1 + aV2)3

> 0.

By Remark 2.4, it is clear that pi > 0 for i = 1, 2, 3. On the other hand, we
also have

p1p2 − p3 =
δ(T1 −R02T2)

T1(1 + aV2)2
Γ,

where

Γ =b1hT2 + b2lT2 − δl + la2V 2
2 (δ − b2T2)

+ (1 + aV2)
2

(
s

T2
+

rT2

TM

)[
s

T2
+

rT2

TM
+ δ + l − b2T2

]
+ (1 + aV2)

[
1

δ + l − b2T2

(
s

T2
+

rT2

TM

)
+ 1

](
b1b2T2V2 + b22T2I2(1 + aV2)

)
− δl

h

[
b1hV2 + b2l(1 + aV2)

2

δ + l − b2T2

]
.

By Routh–Hurwitz stability criterion, the proof is complete. □

In the sequel, the global stability of E2 will be presented.

Theorem 3.4. Suppose that R0 > 1. Then, the endemic equilibrium E2 is
globally asymptotically stable.
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Proof. Define a Lyapunov function as

L(T, I, V ) = T − T2 − T2 ln
T

T2
+ I − I2 − I2 ln

I

I2

+
b1T2V2

hI2(1 + aV2)

(
V − V2 − V2 ln

V

V2

)
.

Computing the derivative of L(T, I, V ) along the positive solutions of (1.2),
it can be written that

dL

dt
|(3)=

(
1− T2

T

)
Ṫ +

(
1− I2

I

)
İ +

b1T2V2

hI2(1 + aV2)

(
1− V2

V

)
V̇ . (3.6)

From model (1.2) we get

s = dT2 − rT2(1−
T2

TM
) +

b1T2V2

1 + aV2
+ b2T2I2,

b1T2V2

1 + aV2
+ b2T2I2 = δI2,

V2 =
h

l
I2.

(3.7)

Therefore, from (3.6) and (3.7), it can be obtained that

dL

dt
|(3)=

(
1− T2

T

)(
s− dT + rT (1− T

TM
)− b1TV

1 + aV
− b2TI

)
+

(
1− I2

I

)(
b1TV

1 + aV
+ b2TI − δI

)
+

b1T2V2

hI2(1 + aV2)

(
1− V2

V

)
(hI − lV )

= −
[
d− r + r

(
T + T2

TM

)]
(T − T2)

2

T

− b1T2V2

1 + aV2

[
a(V − V2)

2

(1 + aV2)(1 + aV )V2

]
+

b1T2V2

1 + aV2

[
4− T2

T
− IV2

I2V
− 1 + aV

1 + aV2
− TV (1 + aV2)I2

T2V2(1 + aV )I

]
+ b2T2I2

[
2− T

T2
− T2

T

]
.

(3.8)

On the other hand, since the arithmetic mean is greater than or equal to
the geometric mean, it is easy to check that

4− T2

T
− IV2

I2V
− 1 + aV

1 + aV2
− TV (1 + aV2)I2

T2V2(1 + aV )I
≤ 0,

2− T

T2
− T2

T
≤ 0.

(3.9)
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By (3.8) and (3.9) , it can be concluded that
dL

dt
≤ 0 for all T, I, V > 0.

Hence, the endemic equilibrium E2 is stable. On the other hand,
dL

dt
= 0 if

and only if T = T2, I = I2 and V = V2. Let Ω be the largest invariant set in

Ψ = {(T, I, V ) | L̇ = 0} = {E2}.

We have that Ω = {E2}. The global asymptotically stability of E2 follows
from LaSalle’s invariance principle ([7]). □

4. Numerical simulations

In this section, using the standard Matlab differential equations integrator
for the Runge–Kutta method (ODE45), the numerical simulation of (1.2)
will be studied. The stability of first equilibrium E1(1166.8560, 0, 0) can be
seen in Fig. 1. It is obtained for the parametric values

s = 2, r = 0.2, TM = 1200, d = 0.01, b1 = 0.0006,

b2 = 0.0004, a = 0.00005, δ = 0.8, h = 0.15, l = 2.4.

In this case, R0 = 0.6291 < 1 and the infection free equilibrium E1 is
asymptotically stable. Hereafter, we consider a set of parameters

Figure 1. Solution trajectories as functions of time, tending to stable equi-
librium E1(1166.8560, 0, 0) (r = 0.2, R0 = 0.6291 < 1 ).

s = 2, TM = 1200, d = 0.01, b1 = 0.11,

b2 = 0.004, a = 0.00005, δ = 0.8, h = 0.15, l = 2.4
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and different values of r. Our numerical analysis shows that for r = 0.3,
the endemic equilibrium E2(73.5672, 27.4768, 1.7173) is asymptotically sta-
ble (See Fig. 2). In this case, R0 = 15.8619 > 1 and eigenvalues of the char-
acteristic equation (3.5) are λ1 = −0.0026+0.3871i, λ2 = −0.0026−0.3871i
and λ3 = −2.9460.

Figure 2. Solution trajectories as functions of time, tending to stable equi-
librium E2(73.5672, 27.4768, 1.7173) (r = 0.3, R0 = 15.8619 > 1 ).
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