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Abstract. The object of this paper is to study the existence of an
important orbit in a generalized Liénard type system. This trajectory is
doubly asymptotic to an equilibrium solution, i.e., an orbit which lies in
the intersection of the stable and unstable manifolds of a critical point.
Such an orbit is called a homoclinic orbit.

1. Introduction

Consider the planar system

ẋ = P (Q(y)− F (x))

ẏ = −g(x),
(1.1)

which is a generalized Liénard type system, where P , Q, F and g are continu-
ous functions satisfying suitable assumptions in order to ensure the existence
of a unique solution to the initial value problems. Moreover, suppose that
the following assumptions hold under which the origin is the unique critical
point of system (1.1).
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P (u) and Q(y) are strictly increasing and F (0) = P (0) =
Q(0) = 0, uP (u) > 0 for u ̸= 0, yQ(y) > 0 for y ̸= 0 and
xg(x) > 0 for x ̸= 0.

System (1.1) includes the classical Liénard system as a special case, which is
of great importance in various applications (see [1] to [23] and the references
cited therein).

Definition 1.1. In system (1.1), a trajectory is said to be a homoclinic
orbit if its α− and ω−limit sets are the origin (see Fig. 1.1).

Figure 1. Homoclinic Orbit

The main purpose of this paper is to give an implicit necessary and suf-
ficient condition and some explicit sufficient conditions on F (x), g(x), P (u)
and Q(y) under which system (1.1) has homoclinic orbits. These results
extend and improve the results presented for special cases of system (1.1) in
[3, 11, 18].

The existence of homoclinic orbit is an important problem in nonlinear
dynamical systems and the theory of ordinary differential equations. The re-
sults about the existence of homoclinic orbits for the other systems, such as
the Lorenz system, Schrödinger systems, Predator-Prey systems and Hamil-
tonian systems can be found in [13, 17, 21, 23], respectively. Moreover,
various systems and equations such as generalized Euler equation ([4]) and
Predator-Prey systems ([21]) can be transformed to the Liénard type sys-
tems.

The existence of homoclinic orbits in the Liénard-type systems is closely
connected with the stability of the zero solution and the center problem
(see [6, 11, 18, 20]). If system (1.1) has a homoclinic orbit, then the zero
solution is no longer stable. A homoclinic orbit and a center cannot exist
together in system (1.1). Our subject also has a near relation with the
global attractivity of the origin and oscillation of solutions and so on (see
[9, 12, 19]).

The curve Γ = {(x, y)|y = Q−1(F (x))} is called the characteristic curve
of (1.1). Let

Γ1 = {(x, y)|y = Q−1(F (x)) and x > 0},

and

Γ2 = {(x, y)|y = Q−1(F (x)) and x < 0}.
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Then, Γ = Γ1
⋃
Γ2

⋃
(0, 0). Positive and negative orbits of (1.1) passing

through p ∈ R2 are shown by O+(p) and O−(p), respectively.
The following definitions are presented to state our main results.

Definition 1.2. System (1.1) has property (Z+
1 ) (resp., (Z+

3 )) if there ex-
ists a point p(x0, y0) ∈ Γ1 (resp., p(x0, y0) ∈ Γ2), such that the O+(p) of
(1.1) starting at p approaches the origin through only the first (resp., third)
quadrant (see Fig. 1.2).

Definition 1.3. System (1.1) has property (Z−
2 ) (resp., (Z−

4 )) if there exists
a point p(x0, y0) ∈ Γ2 (resp., p(x0, y0) ∈ Γ1), such that the O−(p) of (1.1)
starting at p approaches the origin through only the second (resp., fourth)
quadrant.

Figure 2. Property (Z+
1 )

If system (1.1) has both properties (Z+
1 ) and (Z−

2 ), then a homoclinic
orbit exists in the upper half-plane. Similarly, if system (1.1) has both
properties (Z+

3 ) and (Z−
4 ), then a homoclinic orbit exists in the lower half-

plane. In this paper we will find conditions for deciding whether system
(1.1) has homoclinic orbit.

Hara and Yoneyama in [9] considered system (1.1) with Q(y) = y and
P (u) = u and presented some sufficient conditionsunder which the system
has or fails to have property (Z+

1 ). Also, Sugie presented an implicit neces-
sary and sufficient condition for system (1.1) with P (u) = u to have property
(Z+

1 ) ([18]). Next, Aghajani and Moradifam in [3] considered system (1.1)
with P (u) = u and gave an implicit necessary and sufficient condition for
the system to have property (Z+

1 ) which improved some results in [18].
In the next section an implicit necessary and sufficient condition and some

explicit sufficient conditions are provided for system (1.1) to have property
(Z+

1 ). Since some nonlinear functions are added to the classical Liénard
system in this article, our results are proper extensions of the known ones
in [3], [9], [11] and [18].
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2. Necessary and Sufficient Conditions for Property of (Z+
1 )

In this section we will give necessary and sufficient conditions for system
(1.1) to have properties (Z+

1 ) and (Z−
2 ). First, consider the following lemma

about asymptotic behavior of solutions of (1.1).

Lemma 2.1. For each point H(c,Q−1(F (c))) with c > 0 or c < 0, the
positive or negative semi-orbit of (1.1) starting at H crosses the negative
y-axis if the following condition hold.
(A1) There exists a δ > 0 such that F (x) < 0 for −δ < x < δ or F (x) has
an infinite number of positive zeroes clustering at x = 0.

Remark 2.2. Lemma 2.1 implies that system (1.1) fails to have properties
(Z+

1 ) and (Z−
2 ) if (A1) holds. Hence, hereafter we assume that there exists

a δ > 0 such that F (x) > 0 for −δ < x < δ.

Theorem 2.3. System (1.1) has property (Z+
1 ) if and only if there exist a

constant δ > 0 and a continuous function ϕ(x) such that

0 ≤ ϕ(x) < F (x) and

∫ x

0

−g(η)

P (ϕ(η)− F (η))
dη ≤ Q−1(ϕ(x)) (2.1)

for 0 < x < δ.

Proof. First, note that the positive semi-orbit of (1.1) starting at
H(x0, Q

−1(F (x0))) is considered as a solution y(x) of

dy

dx
=

−g(x)

P (Q(y)− F (x))
, (2.2)

with y(x0) = Q−1(F (x0)).
Sufficiency: Suppose that system (1.1) fails to have property (Z+

1 ). Thus,
there exist a point H(x0, Q

−1(F (x0))) and x0 > 0 such that the positive
semi-orbit of (1.1) starting at H does not approach the origin through the
first quadrant. Taking the vector field of (1.1) into account, it is obvious
that the positive semi-orbit rotates in clockwise direction about the origin.
For this reason, it crosses the curve y = Q−1(ϕ(x)) and meets the y-axis at
a point (0, y1) with y1 < 0. Let

x1 = inf{x : 0 < x < δ and y(x) > Q−1(ϕ(x))}.

Then, (x1, y(x1)) is the intersection point of O+(H) and the curve y =
Q−1(ϕ(x)) nearest to the origin, that is y(x1) = Q−1(ϕ(x1)) and y <
Q−1(ϕ(x)) for 0 < x < x1. Hence, from (2.1), it can be concluded that

Q−1(ϕ(x1)) < y(x1)− y1 =

∫ x

0

−g(η)

P (Q(y(η))− F (η))
dη

<

∫ x1

0

−g(η)

P (ϕ(η)− F (η))
dη ≤ Q−1(ϕ(x1)),
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which is a contradiction.
Necessity: Suppose that O+(H) approaches the origin through the first
quadrant. Then, its corresponding solution y(x) satisfies

y(x) → 0+ as x → 0. (2.3)

Let δ = x0 and ϕ(x) = Q(y(x)) for 0 < x < δ. It is obvious that ϕ(x) ≥ 0.
Thus,

Q−1(ϕ(x)) = y(x) < Q−1(F (x)),

and therefore, ϕ(x) < F (x) for 0 < x < δ. Also, from (2.3) it can be easily
seen that∫ x

0

−g(η)

P (ϕ(η)− F (η))
dη =

∫ x

0

−g(η)

P (Q(y(η))− F (η))
dη = y(x)− lim

ϵ→0
y(ϵ)

= Q−1(ϕ(x)).

Thus, (2.1) holds and the proof is complete.

Remark 2.4. For P (u) = u, Theorem 2.3 gives the corresponding result of
Sugie in [18].

Corollary 2.5. Suppose that there exists k ∈ (0, 1) and δ > 0 such that

1

Q−1(kF (x))

∫ x

0

−g(η)

P ((k − 1)F (η))
dη ≤ 1 for 0 < x < δ. (2.4)

Then, system (1.1) has property (Z+
1 ).

Proof. Let ϕ(x) = kF (x). The following inequality is obtained from
(2.4). ∫ x

0

−g(η)

P (ϕ(η)− F (η))
dη =

∫ x

0

−g(η)

P ((k − 1)F (η))
dη ≤ Q−1(kF (x)),

for 0 < x < δ. Thus, by Theorem 2.3 system (1.1) has property (Z+
1 ).

Corollary 2.6. Suppose that P (au) ≤ aP (u) for a ∈ (−1, 0) and u > 0. If
there exist k ∈ (0, 1) and δ > 0 such that

1

(1− k)Q−1(kF (x))

∫ x

0

g(η)

P (F (η))
dη ≤ 1 for 0 < x < δ,

then system (1.1) has property (Z+
1 ).

Remark 2.7. For P (u) = u and Q(y) = y and taking k = 1
2 , Corollary 2.6

gives the result of Hara and Yoneyama in [9].

The following corollaries can be obtained as results of Theorem 2.3 which
are very useful in applications.

Corollary 2.8. Suppose that system (1.1) with P (u) = P1(u) has (resp.,
fails to have) property (Z+

1 ). If P2(u) ≤ P1(u) (resp., P2(u) ≥ P1(u))
for u < 0, then system (1.1) with P (u) = P2(u) has (resp., fails to have)
property (Z+

1 ).
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Corollary 2.9. Suppose that system (1.1) with Q(y) = Q1(y) has (resp.,
fails to have) property (Z+

1 ). If Q2(y) ≤ Q1(y) (resp., Q2(y) ≥ Q1(y)) for
y > 0 sufficiently small, then system (1.1) with Q(y) = Q2(y) has (resp.,
fails to have) property (Z+

1 ).

By the same way, we can prove the following theorem about property
(Z−

2 ).

Theorem 2.10. System (1.1) has property (Z−
2 ) if and only if there exist a

constant δ > 0 and a continuous function ϕ(x) such that

0 ≤ ϕ(x) < F (x) and

∫ x

0

−g(η)

P (ϕ(η)− F (η))
dη ≤ Q−1(ϕ(x))

for −δ < x < 0.

Similarly, other obtained results (Corollaries 2.5-??) can be formulated
for property (Z−

2 ).

3. Homoclinc Orbit

In this section some results will be presented about the existence of homo-
clinic orbit in the upper half-plane for system (1.1). The following theorem
is obtained by combining Theorem 2.3 and 2.10.

Theorem 3.1. System (1.1) has homoclinic orbit in the upper half-plane if
and only if there exist a constant δ > 0 and a continuous function ϕ(x) such
that

0 ≤ ϕ(x) < F (x) and

∫ x

0

−g(η)

P (ϕ(η)− F (η))
dη ≤ Q−1(ϕ(x)) (3.1)

for 0 <| x |< δ.

The following two corollaries are obtained from Theorem 3.1, which pro-
vide explicit conditions for system (1.1) to have homoclinic orbit in upper
half-plane. Note that, in Remark 2.2, it is assumed that there exists a δ > 0
such that F (x) > 0 for −δ < x < δ.

Corollary 3.2. Suppose that there exist k ∈ (0, 1) and δ > 0 such that

1

Q−1(kF (x))

∫ x

0

−g(η)

P ((k − 1)F (η))
dη ≤ 1 for 0 <| x |< δ. (3.2)

Then, system (1.1) has homoclinic orbit in the upper half-plane.

Corollary 3.3. Suppose that P (au) ≤ aP (u) for a ∈ (−1, 0) and u > 0. If
there exist k ∈ (0, 1) and δ > 0 such that

1

(1− k)Q−1(kF (x))

∫ x

0

g(η)

P (F (η))
dη ≤ 1 for 0 <| x |< δ, (3.3)

then system (1.1) has homoclinic orbit in the upper half-plane.



HOMOCLINIC ORBIT 7

Remark 3.4. Suppose that F is an even and g is an odd function. It is easy to
see that system (1.1) has property (Z+

1 ) if and only if it has property (Z−
2 ).

Therefore, if system (1.1) has property (Z+
1 ), then it has a homoclinic orbit

in the upper half-plane.

Turning our attention to the lower half-plane, all presented results can be
formulated about properties (Z+

3 ) and (Z−
4 ) and finally about the existence

of homoclinic orbit in the lower half-plane.
In the following, two examples will be presented to illustrate our results

and show the applications of the results.

Example 3.5. Consider the following Gause-type Predator-Prey system

u̇ = ur(u)− vsf(u)

v̇ = v(q(u)−D),
(3.4)

with f(u) = u, r(u) = β − γ|u − α|, q(u) = u2, D = α2 and β > αγ.
In system (3.4), u(t) and v(t) represent prey and predator densities, the
function f(u) is functional response, q(u) is the growth rate of the predator,
r(u) is the growth rate of the prey in the absence of any predators, and
D > 0 is the natural death rate of the predator in the absence of any prey.
The constants α, β and γ are positive ecological parameters. System (3.4)
has the positive equilibrium E∗ = (α, β). By the change of variables

x = u− α, y = lnβ − ln v and dt = uds,

system (3.4) will be transformed into system (1.1) with

P (u) = u, Q(y) = β(1− e−y), F (x) = γ|x| and g(x) = x+ α− α2

x+ α
.

(3.5)
Functions F (x) and g(x) are defined on (−α,+∞) and satisfy F (0) = 0 and
xg(x) > 0 for x ̸= 0. Also, Q(y) is defined on R satisfying Q(0) = 0 and

yQ(y) > 0 for y ̸= 0. The inverse function of Q(y) is Q−1(y) = ln(
β

β − y
)

where defined on (−∞, β). For 0 < x <
β

kγ
, by using Corollary 3.3, it can

be written that

1

(1− k)Q−1(kF (x))

∫ x

0

g(η)

P (F (η))
dη =

1

γ(1− k) ln

(
β

β − kγx

)(
x+ α ln(1 +

x

α
)

)

<
2β

γ2(1− k)k
.

By choosing k =
1

2
, it can be concluded that

1

(1− k)Q−1(kF (x))

∫ x

0

g(η)

P (F (η))
dη <

8β

γ2
.
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If 0 < 8β ≤ γ2, then

1

(1− k)Q−1(kF (x))

∫ x

0

g(η)

P (F (η))
dη < 1.

By a similar argument, it can be shown that for −α < x < 0

1

(1− k)Q−1(kF (x))

∫ x

0

g(η)

P (F (η))
dη < 1.

Therefore, by Corollary 3.3 this system has a homoclinic orbit in the upper
half-plane (see Fig. 4.1).

Figure 3. Phase portrait for system (3.4) with α = 0.2, β =
0.75 and γ = 3.

Remark 3.6. Sugie and Kimoto in [21], under the assumption Q(y) ≤ my
for y > 0, showed that system (1.1) with functions in (3.5) has homoclinic
orbits in the upper half-plane if 0 < 8β ≤ γ2. In this work, the existence
of homoclinic orbits has been presented without the assumption Q(y) ≤ my
for y > 0.

The next example shows a new application which comes from articles
treating the Liénard equation with the differential operator related to the
relativistic acceleration, that is

d

dt

( ẋ√
1− (ẋ)2

)
+ f(x)ẋ+ g(x) = 0, (3.6)

which, nowadays, is a quite interesting topic in works concerning the case
of generalized Liénard equations. The existence of a stable limit cycle and
periodic solutions of relativistic Liénard equation (3.6) has been investigated
by Mawhina and Villari in [15]. Now, we apply our results to a special case
of this equation.
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Equation (3.6) can easily be transformed to system (1.1) with

P (u) =
u√

1 + u2
, Q(y) = y and F (x) =

∫ x

0
f(η)dη.

Example 3.7. Consider system (1.1) with

P (u) =
u√

1 + u2
, Q(y) = y, F (x) = x2 and g(x) =

x3

2
√
1 + x4

.

(3.7)

Since P (au) ≤ aP (u) for −1 < a < 0 and u > 0, from Corollary 2.6, by
choosing k = 1

2 , we have

1

(1− k)Q−1(kF (x))

∫ x

0

g(η)

P (F (η))
dη =

2

x2

∫ x

0
ηdη = 1.

Therefore, this system has property (Z+
1 ). Since F is even and g is odd,

Remark 3.4 implies that this system has a homoclinic orbit in the upper
half-plane (see Fig. 4.3).

Figure 4. Phase portrait for system (3.7).
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