

FIXED POINT THEOREMS FOR θ - ϕ -CONTRACTION ON COMPLETE *b*-METRIC SPACES

PARASTOO HEIATIAN NAEINI*

Department of Mmathematics, Payame Noor University, P. O. Box 19395-3697, Tehran, Iran parastoo.heiatiannaeini@pnu.ac.ir

ABSTRACT. In this paper, we introduce a new notion of generalized θ - ϕ -contraction and establish some results of fixed point for such mappings in complete *b*-metric space.

1. INTRODUCTION

The Banach contraction principle is a fundamental result in fixed point theory [2]. Due to its importance, various mathematics studied many interesting extensions and generalizations, (see [7]). In 2014, Jleli and Samet [5] analyzed a generalization of the Banach fixed point theorem on generalized metric spaces in a new type of contraction mappings called θ -contraction (or JS -contraction) and proved a fixed point result in generalized metric spaces. This direction has been studied and generalized in different spaces and various fixed point theorems have been developed (see [6]). Many generalizations of the concept of metric spaces are defined and some fixed point theorems were proved in these spaces. In particular, b -metric spaces were introduced by Bakhtin [1] and Czerwik [3], in such a way that triangle inequality is replaced by the b-triangle inequality: $d(x,y) \leq s(d(x,z)+d(z,y))$ for all pairwise distinct points x, y, z and $s \geq 1$. Any metric space is a bmetric space but in general, bmetric space might not be a metric space.

²⁰²⁰ Mathematics Subject Classification. Primary 47H10; Secondary 54H25

Key words and phrases. Fixed point, rectangular b-metric space, θ - ϕ -contraction.

^{*} Speaker.

P.HEIATIAN NAEINI*

Various fixed point results were established on such spaces. For more information on b-metric spaces and b-metric-like spaces, the readers can refer to (see [4]).

Very recently, Zheng et al. [8] introduced a new concept of θ - ϕ -contraction and established some fixed point results for such mappings in complete metric space and generalized the results of Brower and Kannan.

In this paper, we introduce a new notion of generalized θ - ϕ -contraction and establish some results of fixed point for such mappings in complete *b*metric space. The results presented in the paper extend the corresponding results of Kannan and Reich on *b*-rectangular metric space.

Definition 1.1. Let X be a nonempty set, $s \ge 1$ be a given real number, and let $d: X \times X \to [0, +\infty[$ be a function such that for all $x, y \in X$ and all distinct points $u, v \in X$, each distinct from x and y:

1. d(x, y) = 0, if only if x = y;

2. d(x, y) = d(y, x);

3. $d(x,y) \leq s[d(x,z) + d(z,y)]$, (b-rectangular inequality).

Then (X, d) is called a *b*-metric space.

Definition 1.2. Let θ be the family of all functions θ : $]0, +\infty[\rightarrow]1, +\infty[$ such that

- $(\theta 1) \ \theta$ is increasing,
- ($\theta 2$) for each sequence $(x_n) \subset]0, +\infty[;$

 $\lim_{n\to 0} x_n = 0$ if and only if $\lim_{n\to\infty} \theta(x_n) = 1$;

 $(\theta 3) \ \theta$ is continuous.

In [8], Zheng et al. presented the concept of θ - ϕ -contraction on metric spaces and proved the following nice result.

Definition 1.3. Let ϕ be the family of all functions $\phi : [1, +\infty[\rightarrow [1, +\infty[$, such that

- $(\varphi 1) \phi$ is nondecreasing;
- $(\varphi 2)$ for each $t \in]1, +\infty[, \lim_{n \to \infty} \phi^n(t) = 1;$
- $(\varphi 3) \phi$ is continuous.

Definition 1.4. Let (X, d) be a metric space and $T : X \to X$ be a mapping. Then T is said to be a θ - ϕ -contraction if there exist $\theta \in \Theta$ and $\phi \in \Phi$ such that for any $x, y \in X$,

$$d(Tx, Ty) > 0 \Rightarrow [d(Tx, Ty)] \le \phi(\theta[N(x, y)]),$$

where

$$N(x, y) = max\{(x, y), d(x, Tx), d(y, Ty)\}.$$

Theorem 1.5. Let (X, d) be a complete metric space and let $T : X \to X$ be a θ - ϕ -contraction. Then T has a unique fixed point.

 $\mathbf{2}$

2. MAIN RESULTS

In this paper, using the idea introduced by Zheng et al., we present the concept θ - ϕ -contraction in b-metric spaces and we prove some fixed point results for such spaces.

Definition 2.1. Let (X, d) be a *b*-metric space with parameter s > 1 space and $T: X \to X$ be a mapping.

(1) T is said to be a θ -contraction if there exist $\theta \in \Theta$ and $r \in]0,1[$ such that

$$d(Tx, Ty) > 0 \Rightarrow \theta[s^3 d(Tx, Ty)] \le \theta[M(x, y)]^r,$$

where

$$M(x,y) = \max\{d(x,y), d(x,Tx), d(y,Ty), \frac{d(x,Ty) + d(Tx,y)}{2s^2}\}.$$

(2) T is said to be a θ - ϕ -contraction if there exist $\theta \in \Theta$ and $\phi \in \Phi$ such that

$$d(Tx,Ty) > 0 \Rightarrow \theta[s^3 d(Tx,Ty) \le \phi[\theta(M(x,y))],$$

where

$$M(x,y) = max\{d(x,y), d(x,Tx), d(y,Ty), \frac{d(x,Ty) + d(Tx,y)}{2s^2}\}.$$

(3) T is said to be a θ - ϕ - Kannan-type contraction if there exist $\theta \in \Theta$ and $\phi \in \Phi$ such that for all $x, y \in X$ with d(Tx, Ty) > 0, we have

$$\theta[s^3d(Tx,Ty)) \le \phi[\theta(\frac{d(x,Tx) + d(y,Ty)}{2})].$$

(4) T is said to be a θ - ϕ -Reich-type contraction if there exist exist $\theta \in \Theta$ and $\phi \in \Phi$ such that for all $x, y \in X$ with d(Tx, Ty) > 0, we have

$$\theta[s^3d(Tx,Ty)) \le \phi[\theta(\frac{d(x,y) + d(x,Tx) + d(y,Ty)}{3})].$$

Theorem 2.2. Let (X, d) be a complete b-metric space and $T : X \to X$ be a θ -contraction, i.e, there exist $\theta \in \Theta$ and $r \in]0, 1[$ such that for any $x, y \in X$, we have

$$d(Tx, Ty) > 0 \Rightarrow \theta[s^3 d(Tx, Ty)] \le \theta[M(x, y)]^r.$$

Then T has a unique fixed point.

Corollary 2.3. Let (X, d) be a complete b-metric space and $T : X \to X$ be a given mapping. Suppose that there exist $\theta \in \Theta$ and $k \in]0,1[$ such that for any $x, y \in X$, we have

$$d(Tx, Ty) > 0 \Rightarrow \theta[s^3 d(Tx, Ty)] \le [\theta(d(x, y))]^k.$$

Theorem 2.4. Let (X, d) be a complete b-metric space and $T : X \to X$ be a mapping. Suppose that there exist $\theta \in \Theta$ and $\phi \in \Phi$ such that for all $x, y \in X$,

$$d(Tx,Ty) > 0 \Rightarrow \theta[s^3d(Tx,Ty)] \le \phi[\theta(M(x,y))]$$

where

$$M(x,y) = max\{d(x,y), d(x,Tx), d(y,Ty), \frac{1}{2s^2}d(y,Tx)\}.$$

Then T has a unique fixed point.

It follows from Theorem 2.4 that we obtain the followed fixed point theorems for θ - ϕ -Kannan-type contraction and θ - ϕ -Reich-type contraction. The results presented in the paper improve and extend the corresponding results due to Kannan-type contraction and Reich-type contraction on rectangular b-metric space.

Theorem 2.5. Let (X, d) be a complete b-metric space and $T : X \to X$ be a Kannan-type contraction. Then T has a unique fixed point.

Theorem 2.6. Let (X, d) be a complete b-metric space and $T : X \to X$ be a Reich-type contraction. Then T has a unique fixed point.

References

- I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., 30 (1989), 2637. 1
- 2. S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fundam. Math., 3 (1922), 133181. 1
- S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 511. 1, 2.1
- 4. I. Demir, Fixed point theorems in complex valued fuzzy b-metric spaces with application to integral equations, Miskolc Math. Notes, 22 (2021), 153171. 1
- 5. M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014 2014, 8 pages. 1, 2, 2.4
- A. Kari, M. Rossafi, E. Marhrani, M. Aamri, Fixed-point theorems for θ-φ-contraction in generalized asymmetric metric spaces, Int. J. Math. Math. Sci., 2020 (2020), 19 pages. 1
- S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull., 14 (1971), 121124.
- D. W. Zheng, Z. Y. Cai, P. Wang, New fixed point theorems for --contraction in complete metric spaces, J. Nonlinear Sci. Appl., 10 (2017), 26622670. 1, 2, 2.5, 2.6, 2.7, 2.8

4