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Abstract. Here, by using variational methods, the multiplicity of weak
solutions for a system of problems including the anisotropic −→p (x)-Laplacian
operator is proved.

1. Introduction

Anisotropic −→p −Laplacian operator

∆−→p (x)u =
N∑
i=1

∂

∂xi

(
| ∂u
∂xi

|pi(x)−2 ∂u

∂xi

)
,

−→p = (p1, · · · , pN ), with a complex structure that behaves differently in dif-
ferent directions of space, has been the focus of many authors in recent years
[3, 4]. This operator is used in equations that descriptions electromagnetic
fields, the plasma physics and elastic mechanics.
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In this paper, using variational methods, we examine the existence and
multiplicity of weak solutions for anisotropic system

−∆−→p (x)u+

N∑
i=1

a1(x)|u|pi(x)−2u = λFu(x, u, v) + µGu(x, u, v) in Ω,

−∆−→p (x)v +
N∑
i=1

a2(x)|v|pi(x)−2v = λFv(x, u, v) + µGv(x, u, v) in Ω,

∂u
∂ν = ∂v

∂ν = 0 On ∂Ω,
(1.1)

where Ω ⊂ RN , N ≥ 2, is a non-empty bounded open set with a boundary
∂Ω of class C1, ν is the outer unit normal to ∂Ω. −→p = (p1, · · · , pN ) where for
i = 1, · · · , N , pis are continuous functions on Ω with pi(x) ≥ 2 for all x ∈ Ω.
Also λ, µ are positive parameters, Fξ, Gξ denote the partial derivative of
F,G with respect to ξ and F (x, ., .), G(x, ., .) are continuously differentiable
in R2 for a.e. x ∈ Ω. Moreover, for i = 1, 2, functions ai(x) are true in the
following condition:

(A0)
ai ∈ L∞(Ω), a0i := ess inf

x∈Ω
ai(x) > 0.

If T : Ω× R2 → R then, we suppose following assumption on T :
(T0) T : Ω×R2 → R is measurable in Ω for all (s, t) ∈ R2 and T (x, ., .) is

C1 with respect to (s, t) ∈ R2 for a.e. x ∈ Ω and for each θ > 0,

sup
|(s,t)|≤θ

|Tu(., s, t)|, sup
|(s,t)|≤θ

|Tv(., s, t)| ∈ L1(Ω).

2. Preliminaries and notations

We start by introducing the anisotropic variable exponent Sobolev
spaces. We consider the vectorial function −→p : Ω → RN with −→p (x) =
(p1(x), · · · , pN (x)) that pi ∈ C+(Ω) for all i ∈ {1, · · · , N} . We set

p− := inf
x∈Ω

p(x), p+ := sup
x∈Ω

p(x),

p = min
{
p−i : i = 1, · · · , N

}
, p = max

{
p+i : i = 1, · · · , N

}
.

The anisotropic variable exponent Sobolev space is defined as follows

W 1,−→p (x)(Ω) =

{
u ∈ Lpi(x)(Ω) :

∂u

∂xi
∈ Lpi(x)(Ω) for i = 1, · · · , N

}
,

with the norm ∥u∥−→p := ∥u∥W 1,−→p (x)(Ω) =
∑N

i=1

(
∥ ∂u
∂xi

∥pi + ∥u∥pi
)
.

The space (W 1,−→p (x)(Ω), ∥ · ∥−→p ) is a separable and reflexive Banach
space. We consider the product space

X := W 1,−→p (x)(Ω)×W 1,−→p (x)(Ω)
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which is equipped with the norm ∥(u, v)∥ := ∥u∥−→p + ∥v∥−→p . Define
the functionals Φ,Ψλ,µ : X → R, by

Φ(u, v) :=
N∑
i=1

(∫
Ω

1

pi(x)
| ∂u
∂xi

|pi(x)dx+

∫
Ω

a1(x)

pi(x)
|u|pi(x)dx

)

+

N∑
i=1

(∫
Ω

1

pi(x)
| ∂v
∂xi

|pi(x)dx+

∫
Ω

a2(x)

pi(x)
|v|pi(x)dx

)
, (2.1)

and

Ψλ,µ(u, v) :=

∫
Ω
F (x, u, v)dx+

µ

λ

∫
Ω
G(x, u, v)dx, (2.2)

for any (u, v) ∈ X. set Iλ,µ = Φ(u, v) − λΨλ,µ(u, v). To prove the
main theorem, we need the following lemma which we have proved
in this article.

Lemma 2.1. set U(x) =
∑N

i=1

(∫
Ω | ∂u∂xi

|pi(x)dx+
∫
Ω a(x)|u|pi(x)dx

)
for all u ∈ W 1,−→p (x)(Ω). So, there exist constants β1, β2 > 0 that
(i) ∥u∥−→p ≥ 1 =⇒ β1∥u∥

p
−→p ≤ U(x) ≤ β2∥u∥p−→p ,

(ii) ∥u∥−→p ≤ 1 =⇒ β1∥u∥p−→p ≤ U(x) ≤ β2∥u∥
p
−→p .

3. main result

In the following, we will state the main theorem.

Theorem 3.1. Suppose that
(A1) for each (x, s, t) ∈ Ω× R+ × R+, F (x, s, t) ≥ 0;
(A2) there exist α ∈ L∞(Ω), α(x) > 0 a.e. in Ω and γ1, γ2 ∈ C+ with

0 < γ1(x) ≤ γ+1 < γ+2 <
p

2 such that

|F (x, s, t)|, |G(x, s, t)| ≤ α(x)
(
1 + |s|γ1(x) + |t|γ2(x)

)
for a.e. x ∈ Ω and each (s, t) ∈ R2;

(A3) there exist two positive constants δ and τ such that

c
p

0C
2
pN

p(a01 + a02)meas(Ω)min{δp, δp} > min{1, a01, a02}τp;

(A4)∫
Ω sup|(s,t)|≤τ F (x, s, t)dx

τp
<

pmin{1, a01, a02}
∫
Ω F (x, δ, δ)dx

pC
p

0C
2
pN

p(∥a1∥∞ + ∥a2∥∞)meas(Ω)max {δp, δp}
;

so, for each λ ∈ Λδ,τ , given by]
(∥a1∥∞ + ∥a2∥∞)Nmeas(Ω)max

{
δp, δp

}
p
∫
Ω F (x, δ, δ)dx

,
min{1, a01, a02}τp

pC
p

0C
2
pN

p−1
∫
Ω sup|(s,t)|≤τ F (x, s, t)dx

[
,

(3.1)
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and for every G : Ω × R2 → R, there is ε > 0 given by ε =
min{Aτ ,Bδ}, where

Aτ =
min{1, a01, a02}τp − λpC

p

0C
2
pN

p−1
∫
Ω sup|(s,t)|≤τ F (x, s, t)dx

pC
p

0C
2
pN

p−1
∫
Ω sup|(s,t)|≤τG(x, s, t)dx

,

Bδ =
λp

∫
Ω F (x, δ, δ)dx−N(∥a1∥∞ + ∥a2∥∞)meas(Ω)max

{
δp, δp

}
p
∫
ΩG(x, δ, δ)dx

,

such that for each µ ∈ [0, ε[ , the problem (1.1) admits at least three
distinct weak solutions.

Proof. Using the critical points theorem of Bonanno and Marano[1],
we prove the existence at least three distinct weak solutions for sys-
tem (1.1). we showed that Φ is coercive and functions Φ and Ψ hold
in the conditions of the three critical points theorem of Bonanno,
that’s mean,

• Φ,Ψλ,µ ∈ C1(X,R) [2, Lemma 3.4].
• The functional Φ is sequentially weakly lower semicontinuous.
• Ψ′

λ,µ : X → X∗ is a compact operator.
• Φ′ admits a continuous inverse on X∗.

In the following, for δ > 0, we pick w(x) := (δ, δ) for any x ∈ Ω and

r :=
min

{
1, a01, a

0
2

}
pC2

pN
p−1

(
τ

C0

)p

.

We show that for λ ∈

]
Φ(w)

Ψ(w)
,

r

sup(u,v)∈Φ−1(]−∞,r[)Ψ(u, v)

[
,

the functional Iλ,µ is coercive. Therefore, all the conditions of Bo-
nanno’s theorem are satisfied and we can conclude that the func-
tional Iλ,µ admits at least three critical points in X which are the
weak solutions of system (1.1). □
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