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Abstract. In this note, we introduce a lower triangular conditional
operator on a unital C∗-algebra A.

1. Introduction

A linear mapping E : A → B is called a projection if E(b) = b for every
b ∈ B. In this case E2 = E and ‖E‖ ≥ 1. Tomiyama in [8] prove that if E is a
projection of norm 1 from A onto B, then E is positive, E(a∗)E(a) ≤ E(a∗a)
and B-linear, that is, E(b1ab2) = b1E(a)b2 for all a ∈ A and b1, b2 ∈ B. A
B-linear projection E : A → B which is also a positive mapping, is called a
conditional expectation([1, 2, 4, 5, 6, 7, 8]).

Let a, b ∈ A and α ∈ C. We denote by La the left multiplication operator
on A. Define the linear operator Ta : A → A by Ta(x) = E(a)x+ aE(x)−
E(a)E(x), where E : A → B is a conditional expectation operator. Each
a ∈ A can be written uniquely as a = a1 + a2 where a1 = E(a) ∈ B
and a2 = a − E(a) ∈ N (E), because A = B ⊕ N (E). It follows that Ta =
La1+LaE−La1E = La1+La2E. Thus, αTa+Tb = Tαa+b, Ta(N (E)) ⊆ N (E)
and ‖Ta‖ ≤ 3‖a‖. When e = 1 then T1 = I, the identity operator. The
matrix representation of Ta with respect to the decompositionA = B⊕N (E)
is

Ta =

[
La1 0
La2 La1

]
,

where a = a1+a2. Put a?b = a?E b = Ta(b). Then a?b = a1b+ab1−a1b1 =
a1b1 + (a1b2 + a2b1). So (a ? b)1 = a1b1 and (a ? b)2 = a1b2 + a2b1. It follows
that

TaTb =

[
La1 0
La2 La1

] [
Lb1 0
Lb2 Lb1

]
=

[
L(a?b)1 0
L(a?b)2 L(a?b)1

]
= Ta?b.

Put K = K(E) = {Ta = La1 + La2E : a ∈ A}. Then K is a subalgebra of
B(A), the Banach algebra of all bounded and linear maps defined on A and
with values in A. Note that the mapping T : A → K given by T (a) = Ta is
linear with ‖T ‖ ≤ 3 and T (a ? b) = T (a)T (b) for all a, b ∈ A.
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2. Characterizations

Let E1, E2 be two distinct conditional expectations from A onto B. Then
it is easy to check that G := E1 + E2 − I is invertible. Since E1E2 = E2

and E2E1 = E1, then we have E1G = E2 = GE2, E2G = E1 = GE1 and
(I − E2)(I − E1) = I − E2.

Proposition 2.1. For a ∈ A, let Ta ∈ K(E1) and Sa ∈ K(E2). Then there
is an invertible operator G on A such that GTaG = SG(a) and the mapping
Λ : Ta → GTaG is an algebra isomorphism of K(E1) onto K(E2) which is a
homeomorphism.

Proof. Take G = E1 + E2 − I. Then G is invertible with G−1 = G. Recall
that for each a, b ∈ A, Ta(b) = a ?E1 b = (E1a)b+ a(E1b)− (E1a)(E1b) and
Sa(b) = a ?E2 b = (E2a)b+ a(E2b)− (E2a)(E2b). Then we have

(TaG)(b) = Ta(E1b+ E2b− b)
= a ?E1 (E1b) + a ?E1 (E2b)− a ?E1 b

= a(E2b) + (E1a)(E1b)− (E1a)b,

and

(GTaG)(b) = (E1 + E2 − I)[a(E2b) + (E1a)(E1b)− (E1a)b]

= E2b− a(E2b) + (E1a)b.

On the other hand, we have

SGa(b) = (Ga) ?E2 b = E2(Ga)b+ (Ga)(E2b)− E2(Ga)E2(b)

= (E1a)b+ (E2a)(E2b)− a(E2b).

Thus, GTaG = SGa ∈ K(E2). Also, Λ(TaTb) = Λ(Ta)Λ(Tb). So, Λ is a
continuous algebra isomorphism and Λ−1(Sb) = GSbG is also continuous
with respect to any of the operator topologies. �

Proposition 2.2. Let a ∈ A. If a1 has a left inverse, then Ta is injective.
Moreover, if B has a right invertible element, then the mapping T : A → K
given by T (a) = Ta is injective.

Proof. Let Ta(b) = 0 for some b ∈ A. Then a1b1 = −(a1b2 + a2b1) ∈
A∩N (E) = {0} and so b1 = 0. It follows that a1b = 0 and hence b = 0. Now,
let b0 ∈ B is a right invertible element and let Ta(b) = a1b+ab1−a1b1 = 0 for
all b ∈ A. Take b = e. Then ae = 0 and so a1 = E(ae) = 0. Thus, a2b1 = 0
for all b1 ∈ B. Take b1 = b0. Then a2 = 0. Consequently, a = 0. �

Proposition 2.3. Let S0(A|B) = {x ∈ A : Aex ⊆ B}. Then the following
assertions hold.

(i) N e+ eN + B = ∨a∈AR(Ta), where ∨ denotes the algebraic span.
(ii) ∪a∈ATa(S0) ⊆ B.
(iii) N ⊆ ∩a∈NN (Ta). Moreover, if N has a left invertible element, then

N = ∩a∈NN (Ta).
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Proof. (i) Let a, x ∈ A. Then Ta(x) = (a2x1)e+e(a1x2)+a1x1 ∈ N e+eN+B
and hence ∨a∈AR(Ta) ⊆ N e + eN + B. Conversely, let k ∈ N and b ∈ B.
Since ek = T1(k), ke = Tk(1) and b = Tb(e), thenN e+eN+B ⊆ ∨a∈AR(Ta).

(ii) Let a ∈ A and x ∈ S0. Then {ex, aex} ⊂ B, x1 = E(x) = E(ex) = ex
and so Ta(x) = a1x + ax1 − a1x1 = a1ex + aex − a1ex = aex ∈ B. Thus,
∪a∈ATa(S0) ⊆ B.

(iii) Let {a, x} ⊂ N . Then a1 = 0 = x1, Ta(x) = 0 and so x ∈ N (Ta)
for all a ∈ N . Now let x ∈ ∩a∈NN (Ta) and for some a2 ∈ N , there is an
element a0 ∈ A such that a0a2 = 1. Then a2x1 = Ta2(x) = 0 and hence
x1 = a0a2x1 = 0. Thus, x = x2 ∈ N . �

Proposition 2.4. Let a, b ∈ A. Then the equation TaX = Tb has a solution
in K whenever a1 has a left inverse.

Proof. Let a0a1 = 1 and X = Tx for some a0, x ∈ A. According to the
matrix form of TaTx = Tb, we have[

La1x1 0
La2x1+a1x2 La1x1

]
=

[
Lb1 0
Lb2 Lb1

]
.

It follows that a1x1 = b1 and a2x1 + a1x2 = b2. Thus, x1 = a0b1 and
a1x2 = b2 − a2x1. Then x2 = a0b2 − a0a2a0b1 and hence x = x1 + x2 =
a0b+ a0a2a0b1. �

It has been shown in [3, Lemma 1.4, Proposition 3.1] that sN = N s = 0
and ‖b+ S1‖ B

S1

= ‖Lb‖N→N , for all s ∈ S1 and b ∈ B. Using these, we have

the following result.

Proposition 2.5. Let ‖I − E‖ ≤ 1. Then

‖La1‖N→N ≤ inf
k∈N
‖Ta+k‖ ≤ ‖Ta1‖ ≤ ‖La1‖B→B + ‖La1‖N→N .

Proof. Let s ∈ S1 and x ∈ A with ‖x‖ = 1. Since E is a contraction, then
we have ‖x1‖ = ‖E(x)‖ ≤ ‖E‖ ‖x‖ ≤ ‖x‖ = 1 and ‖x2‖ = ‖(I − E)x‖ ≤
‖I − E‖ ‖x‖ ≤ 1. Then we get that

‖Ta1x‖ = ‖a1x1 + a1x2‖ ≤ ‖a1x1‖+ ‖a1x2‖
= ‖a1x1‖+ ‖(a1 + s)x2‖ ≤ sup

x1∈B
‖a1x1‖+ ‖a1 + s‖

= ‖La1‖B→B + inf ‖a1 + s‖ = ‖La1‖B→B + ‖a1 + S1‖ B
s1

.

Thus, ‖Ta1‖ ≤ ‖La1‖B→B + ‖La1‖N→N . Also, we have

inf
k∈N
‖Ta+k‖ ≤ ‖Ta+(a1−a)‖ = ‖Ta1‖.

On the other hand, ‖Ta+k‖ = ‖Ta1+(a2+k)‖ = sup‖x‖=1 ‖a1x+ (a2 + k)x1‖ ≥
sup‖x‖=1 ‖a1x2‖ = ‖La1‖N→N . Hence, infk∈N ‖Ta+k‖ ≥ ‖La1‖N→N . �

Proposition 2.6. K is closed in the norm operator topology.
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Proof. Let {Tan} ⊆ K and ‖Tan − T‖ → 0, for some T ∈ B(A). Then we
have

lim
n→∞

Tan = lim
n→∞

[
Lan1 0
Lan2 Lan1

]
=

[
T1 T2
T3 T4

]
= T

where an1 = E(an) and an2 = an − E(an). Since Tan(N ) ⊆ N then
T (N ) ⊆ N , and so T2 = 0. Further, limn→∞ ‖Tan1 − T1‖B→B = 0 im-
plies that limn→∞ an1 = limn→∞ an1e = T1e = ETEe = E(Te), and so
T1x1 = limn→∞ an1x1 = E(Te)x1 for all x1 ∈ B. Thus, T1 = LE(Te). Like-
wise, for each x2 ∈ N we have T4x2 = limn→∞ an1x2 = E(Te)x2 and hence
T4 = LE(Te). Moreover, since limn→∞ an = limn→∞ Tan1 = T1, then for
each x1 ∈ B we obtain that T3x1 = limn→∞ an2x1 = limn→∞(an − an1)x1 =
(T1− E(Te))x1. Cosequently, T1− E(Te) ∈ N , T3 = LT1−E(Te) and

T =

[
LE(Te) 0

LT1−E(Te) LE(Te)

]
∈ K.

�
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