A CONDITIONAL OPERATOR ON C*-ALGEBRAS

M. R. JABBARZADEH

Faculty of Mathematical Sciences, University of Tabriz, P. O. Box: 51666-15648, Tabriz, Iran miabbar@tabrizu.ac.ir

ABSTRACT. In this note, we introduce a lower triangular conditional operator on a unital C^* -algebra \mathcal{A} .

1. INTRODUCTION

A linear mapping $E : \mathcal{A} \to \mathcal{B}$ is called a projection if E(b) = b for every $b \in \mathcal{B}$. In this case $E^2 = E$ and $||E|| \ge 1$. Tomiyama in [8] prove that if E is a projection of norm 1 from \mathcal{A} onto \mathcal{B} , then E is positive, $E(a^*)E(a) \le E(a^*a)$ and \mathcal{B} -linear, that is, $E(b_1ab_2) = b_1E(a)b_2$ for all $a \in \mathcal{A}$ and $b_1, b_2 \in \mathcal{B}$. A \mathcal{B} -linear projection $E : \mathcal{A} \to \mathcal{B}$ which is also a positive mapping, is called a conditional expectation([1, 2, 4, 5, 6, 7, 8]).

Let $a, b \in \mathcal{A}$ and $\alpha \in \mathbb{C}$. We denote by L_a the left multiplication operator on \mathcal{A} . Define the linear operator $T_a : \mathcal{A} \to \mathcal{A}$ by $T_a(x) = E(a)x + aE(x) - E(a)E(x)$, where $E : \mathcal{A} \to \mathcal{B}$ is a conditional expectation operator. Each $a \in \mathcal{A}$ can be written uniquely as $a = a_1 + a_2$ where $a_1 = E(a) \in \mathcal{B}$ and $a_2 = a - E(a) \in \mathcal{N}(E)$, because $\mathcal{A} = \mathcal{B} \oplus \mathcal{N}(E)$. It follows that $T_a = L_{a_1} + L_a E - L_{a_1} E = L_{a_1} + L_{a_2} E$. Thus, $\alpha T_a + T_b = T_{\alpha a+b}, T_a(\mathcal{N}(E)) \subseteq \mathcal{N}(E)$ and $||T_a|| \leq 3||a||$. When e = 1 then $T_1 = I$, the identity operator. The matrix representation of T_a with respect to the decomposition $\mathcal{A} = \mathcal{B} \oplus \mathcal{N}(E)$ is

$$T_a = \left[\begin{array}{cc} L_{a_1} & 0\\ L_{a_2} & L_{a_1} \end{array} \right],$$

where $a = a_1 + a_2$. Put $a \star b = a \star_E b = T_a(b)$. Then $a \star b = a_1 b + a b_1 - a_1 b_1 = a_1 b_1 + (a_1 b_2 + a_2 b_1)$. So $(a \star b)_1 = a_1 b_1$ and $(a \star b)_2 = a_1 b_2 + a_2 b_1$. It follows that

$$T_{a}T_{b} = \begin{bmatrix} L_{a_{1}} & 0\\ L_{a_{2}} & L_{a_{1}} \end{bmatrix} \begin{bmatrix} L_{b_{1}} & 0\\ L_{b_{2}} & L_{b_{1}} \end{bmatrix} = \begin{bmatrix} L_{(a\star b)_{1}} & 0\\ L_{(a\star b)_{2}} & L_{(a\star b)_{1}} \end{bmatrix} = T_{a\star b}$$

Put $\mathcal{K} = \mathcal{K}(E) = \{T_a = L_{a_1} + L_{a_2}E : a \in \mathcal{A}\}$. Then \mathcal{K} is a subalgebra of $B(\mathcal{A})$, the Banach algebra of all bounded and linear maps defined on \mathcal{A} and with values in \mathcal{A} . Note that the mapping $\mathcal{T} : \mathcal{A} \to \mathcal{K}$ given by $\mathcal{T}(a) = T_a$ is linear with $\|\mathcal{T}\| \leq 3$ and $\mathcal{T}(a \star b) = \mathcal{T}(a)\mathcal{T}(b)$ for all $a, b \in \mathcal{A}$.

²⁰²⁰ Mathematics Subject Classification. Primary 47A63, 47A30.

Key words and phrases. C^{*}-algebra, conditional expectation.

M. R. JABBARZADEH

2. Characterizations

Let E_1, E_2 be two distinct conditional expectations from \mathcal{A} onto \mathcal{B} . Then it is easy to check that $G := E_1 + E_2 - I$ is invertible. Since $E_1E_2 = E_2$ and $E_2E_1 = E_1$, then we have $E_1G = E_2 = GE_2$, $E_2G = E_1 = GE_1$ and $(I - E_2)(I - E_1) = I - E_2$.

Proposition 2.1. For $a \in A$, let $T_a \in \mathcal{K}(E_1)$ and $S_a \in \mathcal{K}(E_2)$. Then there is an invertible operator G on A such that $GT_aG = S_{G(a)}$ and the mapping $\Lambda : T_a \to GT_aG$ is an algebra isomorphism of $\mathcal{K}(E_1)$ onto $\mathcal{K}(E_2)$ which is a homeomorphism.

Proof. Take $G = E_1 + E_2 - I$. Then G is invertible with $G^{-1} = G$. Recall that for each $a, b \in \mathcal{A}$, $T_a(b) = a \star_{E_1} b = (E_1 a)b + a(E_1 b) - (E_1 a)(E_1 b)$ and $S_a(b) = a \star_{E_2} b = (E_2 a)b + a(E_2 b) - (E_2 a)(E_2 b)$. Then we have

$$(T_a G)(b) = T_a(E_1 b + E_2 b - b)$$

= $a \star_{E_1} (E_1 b) + a \star_{E_1} (E_2 b) - a \star_{E_1} b$
= $a(E_2 b) + (E_1 a)(E_1 b) - (E_1 a)b$,

and

$$(GT_aG)(b) = (E_1 + E_2 - I)[a(E_2b) + (E_1a)(E_1b) - (E_1a)b]$$

= $E_2b - a(E_2b) + (E_1a)b.$

On the other hand, we have

$$S_{Ga}(b) = (Ga) \star_{E_2} b = E_2(Ga)b + (Ga)(E_2b) - E_2(Ga)E_2(b)$$

= $(E_1a)b + (E_2a)(E_2b) - a(E_2b).$

Thus, $GT_aG = S_{Ga} \in \mathcal{K}(E_2)$. Also, $\Lambda(T_aT_b) = \Lambda(T_a)\Lambda(T_b)$. So, Λ is a continuous algebra isomorphism and $\Lambda^{-1}(S_b) = GS_bG$ is also continuous with respect to any of the operator topologies.

Proposition 2.2. Let $a \in A$. If a_1 has a left inverse, then T_a is injective. Moreover, if \mathcal{B} has a right invertible element, then the mapping $\mathcal{T} : \mathcal{A} \to \mathcal{K}$ given by $\mathcal{T}(a) = T_a$ is injective.

Proof. Let $T_a(b) = 0$ for some $b \in \mathcal{A}$. Then $a_1b_1 = -(a_1b_2 + a_2b_1) \in \mathcal{A} \cap \mathcal{N}(E) = \{0\}$ and so $b_1 = 0$. It follows that $a_1b = 0$ and hence b = 0. Now, let $b_0 \in \mathcal{B}$ is a right invertible element and let $T_a(b) = a_1b + ab_1 - a_1b_1 = 0$ for all $b \in \mathcal{A}$. Take b = e. Then ae = 0 and so $a_1 = E(ae) = 0$. Thus, $a_2b_1 = 0$ for all $b_1 \in \mathcal{B}$. Take $b_1 = b_0$. Then $a_2 = 0$. Consequently, a = 0.

Proposition 2.3. Let $S_0(\mathcal{A}|\mathcal{B}) = \{x \in \mathcal{A} : \mathcal{A}ex \subseteq \mathcal{B}\}$. Then the following assertions hold.

(i) $\mathcal{N}e + e\mathcal{N} + \mathcal{B} = \bigvee_{a \in A} \mathcal{R}(T_a)$, where \lor denotes the algebraic span.

(*ii*) $\cup_{a \in A} T_a(S_0) \subseteq \mathcal{B}$.

(iii) $\mathcal{N} \subseteq \bigcap_{a \in \mathcal{N}} \mathcal{N}(T_a)$. Moreover, if \mathcal{N} has a left invertible element, then $\mathcal{N} = \bigcap_{a \in \mathcal{N}} \mathcal{N}(T_a)$.

Proof. (i) Let $a, x \in A$. Then $T_a(x) = (a_2x_1)e + e(a_1x_2) + a_1x_1 \in \mathcal{N}e + e\mathcal{N} + \mathcal{B}$ and hence $\forall_{a \in A} \mathcal{R}(T_a) \subseteq \mathcal{N}e + e\mathcal{N} + \mathcal{B}$. Conversely, let $k \in \mathcal{N}$ and $b \in \mathcal{B}$. Since $ek = T_1(k)$, $ke = T_k(1)$ and $b = T_b(e)$, then $\mathcal{N}e + e\mathcal{N} + \mathcal{B} \subseteq \forall_{a \in A} \mathcal{R}(T_a)$.

(ii) Let $a \in A$ and $x \in S_0$. Then $\{ex, aex\} \subset \mathcal{B}, x_1 = E(x) = E(ex) = ex$ and so $T_a(x) = a_1x + ax_1 - a_1x_1 = a_1ex + aex - a_1ex = aex \in \mathcal{B}$. Thus, $\bigcup_{a \in \mathcal{A}} T_a(S_0) \subseteq \mathcal{B}$.

(iii) Let $\{a, x\} \subset \mathcal{N}$. Then $a_1 = 0 = x_1$, $T_a(x) = 0$ and so $x \in \mathcal{N}(T_a)$ for all $a \in \mathcal{N}$. Now let $x \in \bigcap_{a \in \mathcal{N}} \mathcal{N}(T_a)$ and for some $a_2 \in \mathcal{N}$, there is an element $a_0 \in \mathcal{A}$ such that $a_0 a_2 = 1$. Then $a_2 x_1 = T_{a_2}(x) = 0$ and hence $x_1 = a_0 a_2 x_1 = 0$. Thus, $x = x_2 \in \mathcal{N}$.

Proposition 2.4. Let $a, b \in A$. Then the equation $T_aX = T_b$ has a solution in \mathcal{K} whenever a_1 has a left inverse.

Proof. Let $a_0a_1 = 1$ and $X = T_x$ for some $a_0, x \in \mathcal{A}$. According to the matrix form of $T_aT_x = T_b$, we have

$$\begin{bmatrix} L_{a_1x_1} & 0\\ L_{a_2x_1+a_1x_2} & L_{a_1x_1} \end{bmatrix} = \begin{bmatrix} L_{b_1} & 0\\ L_{b_2} & L_{b_1} \end{bmatrix}.$$

It follows that $a_1x_1 = b_1$ and $a_2x_1 + a_1x_2 = b_2$. Thus, $x_1 = a_0b_1$ and $a_1x_2 = b_2 - a_2x_1$. Then $x_2 = a_0b_2 - a_0a_2a_0b_1$ and hence $x = x_1 + x_2 = a_0b + a_0a_2a_0b_1$.

It has been shown in [3, Lemma 1.4, Proposition 3.1] that $s\mathcal{N} = \mathcal{N}s = 0$ and $\|b + S_1\|_{\frac{\mathcal{B}}{S_1}} = \|L_b\|_{\mathcal{N}\to\mathcal{N}}$, for all $s \in S_1$ and $b \in \mathcal{B}$. Using these, we have the following result.

Proposition 2.5. Let $||I - E|| \le 1$. Then

$$\|L_{a_1}\|_{\mathcal{N}\to\mathcal{N}} \leq \inf_{k\in\mathcal{N}} \|T_{a+k}\| \leq \|T_{a_1}\| \leq \|L_{a_1}\|_{\mathcal{B}\to\mathcal{B}} + \|L_{a_1}\|_{\mathcal{N}\to\mathcal{N}}.$$

Proof. Let $s \in S_1$ and $x \in A$ with ||x|| = 1. Since *E* is a contraction, then we have $||x_1|| = ||E(x)|| \le ||E|| ||x|| \le ||x|| = 1$ and $||x_2|| = ||(I - E)x|| \le ||I - E|| ||x|| \le 1$. Then we get that

$$\begin{aligned} \|T_{a_1}x\| &= \|a_1x_1 + a_1x_2\| \le \|a_1x_1\| + \|a_1x_2\| \\ &= \|a_1x_1\| + \|(a_1 + s)x_2\| \le \sup_{x_1 \in B} \|a_1x_1\| + \|a_1 + s\| \\ &= \|L_{a_1}\|_{B \to B} + \inf \|a_1 + s\| = \|L_{a_1}\|_{B \to B} + \|a_1 + S_1\|_{\frac{B}{s_1}}. \end{aligned}$$

Thus, $||T_{a_1}|| \leq ||L_{a_1}||_{B\to B} + ||L_{a_1}||_{\mathcal{N}\to\mathcal{N}}$. Also, we have

$$\inf_{x \in \mathcal{N}} \|T_{a+k}\| \le \|T_{a+(a_1-a)}\| = \|T_{a_1}\|.$$

On the other hand, $||T_{a+k}|| = ||T_{a_1+(a_2+k)}|| = \sup_{||x||=1} ||a_1x+(a_2+k)x_1|| \ge \sup_{||x||=1} ||a_1x_2|| = ||L_{a_1}||_{\mathcal{N}\to\mathcal{N}}$. Hence, $\inf_{k\in\mathcal{N}} ||T_{a+k}|| \ge ||L_{a_1}||_{\mathcal{N}\to\mathcal{N}}$. \Box

Proposition 2.6. \mathcal{K} is closed in the norm operator topology.

Proof. Let $\{T_{a_n}\} \subseteq \mathcal{K}$ and $||T_{a_n} - T|| \to 0$, for some $T \in B(\mathcal{A})$. Then we have

$$\lim_{n \to \infty} T_{a_n} = \lim_{n \to \infty} \begin{bmatrix} L_{a_{n1}} & 0\\ L_{a_{n2}} & L_{a_{n1}} \end{bmatrix} = \begin{bmatrix} T_1 & T_2\\ T_3 & T_4 \end{bmatrix} = T$$

where $a_{n1} = E(a_n)$ and $a_{n2} = a_n - E(a_n)$. Since $T_{a_n}(\mathcal{N}) \subseteq \mathcal{N}$ then $T(\mathcal{N}) \subseteq \mathcal{N}$, and so $T_2 = 0$. Further, $\lim_{n\to\infty} \|T_{a_{n1}} - T_1\|_{\mathcal{B}\to\mathcal{B}} = 0$ implies that $\lim_{n\to\infty} a_{n1} = \lim_{n\to\infty} a_{n1}e = T_1e = ETEe = E(Te)$, and so $T_1x_1 = \lim_{n\to\infty} a_{n1}x_1 = E(Te)x_1$ for all $x_1 \in \mathcal{B}$. Thus, $T_1 = L_{E(Te)}$. Likewise, for each $x_2 \in \mathcal{N}$ we have $T_4x_2 = \lim_{n\to\infty} a_{n1}x_2 = E(Te)x_2$ and hence $T_4 = L_{E(Te)}$. Moreover, since $\lim_{n\to\infty} a_n = \lim_{n\to\infty} T_{a_n} = T_1$, then for each $x_1 \in \mathcal{B}$ we obtain that $T_3x_1 = \lim_{n\to\infty} a_{n2}x_1 = \lim_{n\to\infty} (a_n - a_{n1})x_1 = (T1 - E(Te))x_1$. Cosequently, $T1 - E(Te) \in \mathcal{N}$, $T_3 = L_{T1-E(Te)}$ and

$$T = \begin{bmatrix} L_{E(Te)} & 0\\ L_{T1-E(Te)} & L_{E(Te)} \end{bmatrix} \in \mathcal{K}.$$

References

- 1. D. P. Blecher, Real positive maps and conditional expectations on operator algebras, Positivity and its applications, 63-102, Trends Math., Birkhäuser, Springer, 2021.
- M. D. Choi, A Schwarz inequality for positive linear maps on C^{*}-algebras, Illinois J. Math. 18 (1974), 565-574.
- J. Daughtry, A. Lambert and B. Weinstock, Operators on C*-algebras induced by conditional expectations, Rocky Mountain J. Math. 25 (1995), 1243-1275.
- 4. P. Dodds, C. Huijsmans and B. de Pagter, Characterizations of conditional expectationtype operators, Pacific J. Math. **141** (1990), 55-77.
- 5. J. Grobler and B. de Pagter, Operators represented by conditional expectations and random measures, Positivity 9 (2005), 369-383.
- S. Stratila, Modular theory in operator algebras, Cambridge University Press, Delhi, 2020.
- 7. E. Størmer, Positive linear maps of operator algebras, Springer, Heidelberg, 2013.
- J. Tomiyama, On the projection of norm one in W^{*}-algebras, III. Tohoku Math. J. 11 (1959), 125-129.