

COUPLED FIXED POINT THEOREMS IN ORDERED M-METRIC SPACES

FAHIMEH MIRDAMADI

Department of Mathematics, Islamic Azad University, Isfahan Branch, Isfahan, Iran mirdamadi.f@gmail.com

ABSTRACT. Using control functions, we improve and extend some results of coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces by Lakshmikantam and \hat{C} iri \hat{c} [\[2\]](#page-2-0) to ordered M-metric spaces.

1. Introduction

Partial metric spaces, which are generalizations of metric spaces, introduced by S. G. Mathews [\[3\]](#page-2-1) as a part of the study of denotational semantics of data flow networks and he gave a Banach fixed point result for these spaces. After that, In 2014 Asadi *et al.* [\[1\]](#page-2-2) introduced the *M*-metric space which extends *p*-metric space, by some of certain fixed point theorems obtained therein, many authors proved fixed point theorems on M-metric spaces, see [\[4\]](#page-2-3). Lakshmikantam and Ciric in [\[2\]](#page-2-0), gave some interesting fixed point results on ordered metric spaces, but there exist two error in that paper. In this paper, using a class of control functions, we extend main results of $\boxed{2}$ to complete M-metric spaces. We mention two errors of $\boxed{2}$ as well.

Definition 1.1. ([\[1\]](#page-2-2)) Let X be a non empty set. A function $m: X \times X \rightarrow$ \mathbb{R}^+ is called a *m*-metric if the following conditions are satisfied:

(m1) $m(x, x) = m(y, y) = m(x, y) \iff x = y$,

²⁰²⁰ Mathematics Subject Classification. Primary 47H10; Secondary 54H25

Key words and phrases. Fixed point, Partial metric space, M-metric space, Coupled fixed point.

[∗]FAHIMEH MIRDAMADI

 $(m2)$ $m_{xy} \leq m(x, y)$, $(m3)$ $m(x, y) = m(y, x),$ (m4) $(m(x, y) - m_{xy}) \le (m(x, z) - m_{xz}) + (m(z, y) - m_{zy})$. Where

 $m_{xy} := \min\{m(x, x), m(y, y)\}.$

$$
xy = (x + y) (x + y)
$$

Then the pair (X, m) is called an M-metric space.

The following notation is useful in the sequel.

$$
M_{xy} := \max\{m(x,x),m(y,y)\}.
$$

We note that every p -metric is a *m*-metric. In the following example we present an example of a m-metric which is not p-metric.

Example 1.2. ([\[1\]](#page-2-2)) Let $X = \{1, 2, 3\}$. Define

$$
m(1,2) = m(2,1) = m(1,1) = 8
$$

$$
m(1,3) = m(3,1) = m(3,2) = m(2,3) = 7
$$
 $m(2,2) = 9$ $m(3,3) = 5$

so m is m-metric but m is not p-metric. Since $m(2, 2) \nleq m(1, 2)$ means m is not p-metric. If $D(x, y) = m(x, y) - m_{x,y}$ then $m(1, 2) = m_{1,2} = 8$ but it means $D(1, 2) = 0$ while $1 \neq 2$ which means D is not metric.

Definition 1.3. Let (X, \leq) be a partially ordered set and $f: X \times X \rightarrow X$ and $g: X \to X$. We say f has the mixed g-monotone property if for any $x, y, x_1, x_2, y_1, y_2 \in X$

$$
g(x_1) \le g(x_2) \text{ implies } f(x_1, y) \le f(x_2, y) \tag{1.1}
$$

and

$$
g(y_1) \le g(y_2)
$$
 implies $f(x, y_1) \le f(x, y_2)$ (1.2)

Definition 1.4. An element $(x, y) \in X \times X$ is called a coupled coincidence point of mappings $f : X \times X \to X$ and $g : X \to X$ if

$$
f(x, y) = g(x),
$$
 $f(y, x) = g(y).$

Definition 1.5. Let $f : X \times X \to X$ and $g : X \to X$. We say f and g are commutative if for all $x, y \in X$

$$
g(f(x, y)) = f(g(x), g(y)).
$$

For simplicity, we denote $g(x)$ by gx .

2. main results

Definition 2.1. Let $\psi : \mathbb{R}^+ \to \mathbb{R}^+$ be such that $\psi(t) \to 0$ if and only if $t \to 0$, ψ^{-1} is nondecreasing and one to one and $\psi(a+b) \leq \psi(a) + \psi(b)$ (sub-additivity) for $a, b \in \mathbb{R}^+$. We denote the set of these functions by Ψ . For example, $\psi(t) = \alpha t$ and $\psi(t) = e^{\alpha t}$ for $\alpha \geq 0$ belong to Ψ .

2

INTEGRAL MEANS 3

Theorem 2.2. Let (X, m, \leq) be a partially ordered complete M-metric space. Assume that there is a function $\varphi : [0, +\infty) \to [0, +\infty)$ with $\varphi(0) = 0$, $\varphi(t) < t$ and $\lim \varphi(r) < t$ for each $t > 0$ and also suppose $f: X \times X \rightarrow X$ and $g: X \to X$ are such that f has the mixed g-monotone property and

$$
\psi(m(f(x,y), f(u,v))) \le \varphi(\frac{\psi(m(gx, gu)) + \psi(m(gy, gv))}{2})
$$
\n(2.1)

for all $x, y, u, v \in X$ for which $gx \le gu$ and $gy \ge gv$ and $\psi \in \Psi$. Suppose $f(X \times X) \subseteq g(X)$, g is continuous and commute with f and also suppose either

(a) f is continuous or

(b) X has the following property:

(i) if for a non-decreasing sequence $m^w(x_n, x) \to 0$, then

$$
gx_n \le gx \text{ for all } n. \tag{4}
$$

(ii) if for a non-increasing sequence $m^w(y_n, y) \to 0$, then

$$
gy \le gy_n \quad \text{for all } n. \tag{5}
$$

If there exist $x_0, y_0 \in X$ such that

$$
g(x_0) \le f(x_0, y_0)
$$
 and $g(y_0) \ge f(y_0, x_0)$,

then f and g have a coupled coincidence point.

If (X, \leq) is a partially ordered set, we can endowed $X \times X$ with a partial order as follows:

$$
(x_1, y_1) \le (x_2, y_2) \Longleftrightarrow x_1 \le x_2
$$
 and $y_2 \le y_1$.

The following uniqueness theorem is a generalization of Theorem 2.2 of [\[5\]](#page-2-4).

Theorem 2.3. If in Theorem [2.2,](#page-2-5) we also suppose that for any (x, y) and (x^*, y^*) in $X \times X$, there is $(u, v) \in X \times X$ such that $(f(u, v), f(v, u))$ is comparable to $(f(x, y), f(y, x))$ and $(f(x^*, y^*), f(y^*, x^*))$, then there is a unique point (z, w) such that $z = gz = f(z, w)$, $w = gw = f(w, z)$.

Remark 2.4. It is noted that, the relation (31) in the proof of Theorem 2.2 of [\[2\]](#page-2-0), is not correct because in general φ is not non-decreasing.

REFERENCES

- 1. M. Asadi, E. Karapınar, and P. Salimi, New Extension of p-Metric Spaces with Some fixed point Results on M-metric spaces, Journal of Inequalities and Applications 2014, 2014:18.
- 2. Lakshmikantham V., \acute{C} iri \acute{c} L.: Coupled fixed point theorems for nonlinear contractions in partialy ordered metric spaces, Non linear Anal. 70 4341-4349 (2009).
- 3. Mathews, S.G.: partial metric topology. Proc. 8th Summer Conference on General topology and Applications Ann New York, Acad Sci: 728, 183-197 (1994).
- 4. H. Monfared, M. Azhini and M. Asadi, Fixed point results on M-metric spaces, Journal of Mathematical Analysis, 7(5)(2016), 85-101.
- 5. Oltra, S., Valero, O: Banach's fixed point theorem for partial spaces. Rend Istit Math Univ Trieste 36, 17-26 (2004).