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Abstract. In this paper, we determine the lower and upper estimates
for the essential norm of a substitution vector-valued integral operators
on Orlicz spaces under certain conditions.

1. Introduction

Let θ : R → R+ be a continuous convex function such that
(1) θ(x) = 0 if and only if x = 0.
(2) limx→∞ θ(x) = ∞.
(3) limx→∞

θ(x)
x = ∞.

The convex function θ is called Young’s function. With each Young’s func-
tion θ, one can associate another convex function θ∗ : R → R+ having similar
properties, which is defined by

θ∗(y) = sup{x|y| − θ(x) : x ≥ 0}.
The convex function θ∗ is called complementary Young function to θ. Let
X = (X,Σ, µ) be a σ-finite complete measure space. All comparisons be-
tween two functions or two sets are to be interpreted as holding up to a
µ-null set. If θ is a Young function, then the set of Σ-measurable functions

Lθ(µ) = {f : X → C : ∃α > 0,

∫
X
θ(α|f |)dµ < ∞}
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is a Banach space, with respect with the Luxemburg norm defined by

∥f∥θ = inf{δ > 0 :

∫
X
θ(
|f |
δ
)dµ ≤ 1}.

(Lθ(µ), ∥.∥θ) is called Orlicz space. A Young function θ is said to satisfy
the ∆2-condition(globally) if θ(2x) ≤ kθ(x), x > x0(x0 = 0), for some
constantk > 0. For more details on Orlicz spaces, we refer to [3, 4, 5].

Let φ : X → X be a non-singular measurable transformation; i.e. µ ◦
φ−1 ≪ µ. It is assumed that the Radon-Nikodym derivative h = dµ◦φ−1/dµ
is almost everywhere finite-valued, or equivalently φ−1(Σ) ⊆ Σ is a sub-σ-
finite algebra [6]. We have the following change of variable formula:∫

φ−1(A)
f ◦ φdµ =

∫
A
hfdµ A ∈ Σ, f ∈ L0(Σ).

Any nonsingular measurable transformation φ induces a linear operator
(composition operator) Cφ from L0(µ) into itself defined by

Cφ(f)(x) = f(φ(x)) ;x ∈ X, f ∈ L0(µ),

where L0(Σ) denotes the linear space of all equivalence classes of Σ-measurable
functions on X. Here non-singularity of φ guarantees that the operator Cφ

is well defined as a mapping from L0(Σ) into itself. If Cφ maps on Orlicz
space Lθ(µ) into itself , then Cφ is called composition operator on Lθ(µ).
For a given complex Hilbert space H, let u : X → H be a mapping. We say
that u is weakly measurable if for each g ∈ H the mapping x 7→ ⟨u(x), g⟩ of
X to C is measurable. We will denote this map by ⟨u, g⟩.

Definition 1.1. Let φ : X → X be a non-singular measurable transforma-
tion and Cφ be a composition operator on Lθ(X). Also let u : X → H be
a weakly measurable function. Then the pair (u, φ) induces a substitution
vector-valued integral operator Tφ

u : Lθ(µ) → H defined by

⟨Tφ
u f, g⟩ =

∫
X
⟨u, g⟩f ◦ φdµ, f ∈ Lθ(µ).

It is easy to see that Tφ
u is well defined and linear.

For a sub-σ-finite algebra A ⊆ Σ, the conditional expectation operator
associated with A is the mapping f → EAf , defined for all non-negative f
as well as for all f ∈ Lp(Σ), 1 ≤ p ≤ ∞, where EAf , by Radon-Nikodym
Theorem, is the unique A-measurable function satisfying∫

A
fdµ =

∫
A
EAfdµ, ∀A ∈ A.

For more details on the properties of EA see [2].

Now we are going to investigate closed-range substitution vector-valued
integral operators on Orlicz spaces. Next, we determine the essential norm
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these type operators.

First, we characterize the closedness of range of a substitution vector-
valued integral operator from Lθ(µ) to H.
We start by the following lemma. Put J := ∪λ∈H1σ(hE(|⟨u, λ⟩| ◦ φ−1).

Lemma 1.2. Let Tφ
u be a bounded substitution vector-valued integral opera-

tor from Lθ(µ) to H and there is a constant c > 0 such that supλ∈H1
hE(|⟨u, λ⟩|◦

φ−1 ≥ c on J , then Tφ
u |J is injective..

Theorem 1.3. Let Tφ
u be a bounded substitution vector-valued integral op-

erator from Lθ(µ) to H. Then, the following statements are hold.

(i) Suppose Tφ
u from Lθ(µ) to H has closed range and x ≺ θ then there is

a constant c > 0 such that supλ∈H1
hE(|⟨u, λ⟩| ◦ φ−1 ≥ c on J .

(ii) If there is a constant c > 0 such that supλ∈H1
hE(|⟨u, λ⟩| ◦ φ−1 ≥ c

on J and θ ≺ x, then Tφ
u from Lθ(µ) to H has closed range

In following, we give equivalent conditions with conditions of Theorem
3.2.

Lemma 1.4. Let B be the collection of all Σ-measurable sets E such that

(i) µ(E) < ∞ and

(ii) whenever F ∈ Σ satisfies F ⊆ E and supλ∈H1

∫
φ−1(F ) |⟨u, λ⟩|dµ = 0,

then µ(F ) = 0.
Suppose that E ∈ Σ and µ(E) < ∞. Hence, E ∈ B if and only if E ⊆ J.

Proposition 1.5. The following statements are equivalent.

(i) There is a constant c > 0 such that supλ∈H1
hE(|⟨u, λ⟩|)◦φ−1 ≥ c on J .

(ii) There is a constant α > 0 such that supλ∈H1

∫
φ−1(E) |⟨u, λ⟩|dµ ≥

αµ(E) for all E ∈ B

Let B be a Banach space and K be the set of all compact operators on
B, the essential norm of T means the distance from T to K in the operator
norm, namely

∥T∥e = inf{∥T − S∥ : S ∈ K}.
Clearly, T is compact if and only if ∥T∥e = 0. As is seen [?], the essential
norm plays an interesting role in the compact problem of concrete operators.

Theorem 1.6. Let Tφ
u be a bounded operator on Lθ(µ). Also let α =

inf{r > 0, Nrconsists of finitely many atoms} and
Nr = {x ∈ X := sup

λ∈H1

∥hE(|⟨u, λ⟩|) ◦ φ−1 ≥ r}.
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Then we obtain that
(i) ∥Tφ

u ∥e = 0 if and only if α = 0.
(ii) ∥Tφ

u ∥e ≥ 1
aα where θ ≺ x(i.e. for some a > 0 we have θ(x) ≤ ax. In

particular if a ≤ 1 we have ∥Tφ
u ∥e ≥ α

(iii) ∥Tφ
u ∥e ≤ aα where x ≺ θ(i.e. for some a > 0 we have θ(x) ≤ ax.In

particular if a ≤ 1 we have ∥Tφ
u ∥e ≤ α
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