

The 7th Seminar on Functional Analysis and its Applications

1-2 March 2023

Imam Khomeini International University

Qazvin, Iran

ESSENTIAL NORM OF SUBSTITUTION INTEGRAL OPERATORS ON ORLICZ SPACES

ZAHRA MOAYYERIZADEH

Department of Mathematics, Lorestan University, Khorramabad, Iran moayerizadeh.za@lu.ac.ir

ABSTRACT. In this paper, we determine the lower and upper estimates for the essential norm of a substitution vector-valued integral operators on Orlicz spaces under certain conditions.

1. Introduction

Let $\theta: \mathbb{R} \to \mathbb{R}^+$ be a continuous convex function such that

- (1) $\theta(x) = 0$ if and only if x = 0.
- (2) $\lim_{x\to\infty} \theta(x) = \infty$.

(3) $\lim_{x\to\infty} \frac{\theta(x)}{x} = \infty$. The convex function θ is called Young's function. With each Young's function θ , one can associate another convex function $\theta^*: \mathbb{R} \to \mathbb{R}^+$ having similar properties, which is defined by

$$\theta^*(y) = \sup\{x|y| - \theta(x) : x \ge 0\}.$$

The convex function θ^* is called complementary Young function to θ . Let $X = (X, \Sigma, \mu)$ be a σ -finite complete measure space. All comparisons between two functions or two sets are to be interpreted as holding up to a μ -null set. If θ is a Young function, then the set of Σ -measurable functions

$$L^{\theta}(\mu) = \{ f : X \to \mathbb{C} : \exists \alpha > 0, \int_{X} \theta(\alpha|f|) d\mu < \infty \}$$

²⁰²⁰ Mathematics Subject Classification. Primary 47B20: Secondary 47B38

Key words and phrases. Orlicz spaces, integral operator, Essential norm, Conditional expectation operators.

2 ZM

is a Banach space, with respect with the Luxemburg norm defined by

$$||f||_{\theta} = \inf\{\delta > 0 : \int_{X} \theta(\frac{|f|}{\delta}) d\mu \le 1\}.$$

 $(L^{\theta}(\mu), \|.\|_{\theta})$ is called Orlicz space. A Young function θ is said to satisfy the Δ_2 -condition(globally) if $\theta(2x) \leq k\theta(x), x > x_0(x_0 = 0)$, for some constantk > 0. For more details on Orlicz spaces, we refer to [3, 4, 5].

Let $\varphi: X \to X$ be a non-singular measurable transformation; i.e. $\mu \circ \varphi^{-1} \ll \mu$. It is assumed that the Radon-Nikodym derivative $h = d\mu \circ \varphi^{-1}/d\mu$ is almost everywhere finite-valued, or equivalently $\varphi^{-1}(\Sigma) \subseteq \Sigma$ is a sub- σ -finite algebra [6]. We have the following change of variable formula:

$$\int_{\varphi^{-1}(A)} f \circ \varphi d\mu = \int_A h f d\mu \qquad A \in \Sigma, f \in L^0(\Sigma).$$

Any nonsingular measurable transformation φ induces a linear operator (composition operator) C_{φ} from $L^{0}(\mu)$ into itself defined by

$$C_{\varphi}(f)(x) = f(\varphi(x)) \quad ; x \in X, \quad f \in L^{0}(\mu),$$

where $L^0(\Sigma)$ denotes the linear space of all equivalence classes of Σ -measurable functions on X. Here non-singularity of φ guarantees that the operator C_{φ} is well defined as a mapping from $L^0(\Sigma)$ into itself. If C_{φ} maps on Orlicz space $L^{\theta}(\mu)$ into itself , then C_{φ} is called composition operator on $L^{\theta}(\mu)$. For a given complex Hilbert space \mathcal{H} , let $u: X \to \mathcal{H}$ be a mapping. We say that u is weakly measurable if for each $g \in \mathcal{H}$ the mapping $x \mapsto \langle u(x), g \rangle$ of X to $\mathbb C$ is measurable. We will denote this map by $\langle u, g \rangle$.

Definition 1.1. Let $\varphi: X \to X$ be a non-singular measurable transformation and \mathcal{C}_{φ} be a composition operator on $L^{\theta}(X)$. Also let $u: X \to \mathcal{H}$ be a weakly measurable function. Then the pair (u, φ) induces a substitution vector-valued integral operator $T_u^{\varphi}: L^{\theta}(\mu) \to \mathcal{H}$ defined by

$$\langle T_u^{\varphi} f, g \rangle = \int_X \langle u, g \rangle f \circ \varphi d\mu, \quad f \in L^{\theta}(\mu).$$

It is easy to see that T_u^{φ} is well defined and linear.

For a sub- σ -finite algebra $\mathcal{A} \subseteq \Sigma$, the conditional expectation operator associated with \mathcal{A} is the mapping $f \to E^{\mathcal{A}} f$, defined for all non-negative f as well as for all $f \in L^p(\Sigma), 1 \leq p \leq \infty$, where $E^{\mathcal{A}} f$, by Radon-Nikodym Theorem, is the unique \mathcal{A} -measurable function satisfying

$$\int_{A} f d\mu = \int_{A} E^{\mathcal{A}} f d\mu, \quad \forall A \in \mathcal{A}.$$

For more details on the properties of $E^{\mathcal{A}}$ see [2].

Now we are going to investigate closed-range substitution vector-valued integral operators on Orlicz spaces. Next, we determine the essential norm

these type operators.

First, we characterize the closedness of range of a substitution vectorvalued integral operator from $L^{\theta}(\mu)$ to \mathcal{H} .

We start by the following lemma. Put $J := \bigcup_{\lambda \in \mathcal{H}_1} \sigma(hE(|\langle u, \lambda \rangle| \circ \varphi^{-1}).$

Lemma 1.2. Let T_u^{φ} be a bounded substitution vector-valued integral operator from $L^{\theta}(\mu)$ to \mathcal{H} and there is a constant c > 0 such that $\sup_{\lambda \in \mathcal{H}_1} hE(|\langle u, \lambda \rangle| \circ \varphi^{-1} \geq c$ on J, then $T_u^{\varphi}|_J$ is injective..

Theorem 1.3. Let T_u^{φ} be a bounded substitution vector-valued integral operator from $L^{\theta}(\mu)$ to \mathcal{H} . Then, the following statements are hold.

- (i) Suppose T_u^{φ} from $L^{\theta}(\mu)$ to \mathcal{H} has closed range and $x \prec \theta$ then there is a constant c > 0 such that $\sup_{\lambda \in \mathcal{H}_1} hE(|\langle u, \lambda \rangle| \circ \varphi^{-1} \geq c$ on J.
- (ii) If there is a constant c > 0 such that $\sup_{\lambda \in \mathcal{H}_1} hE(|\langle u, \lambda \rangle| \circ \varphi^{-1} \geq c$ on J and $\theta \prec x$, then T_u^{φ} from $L^{\theta}(\mu)$ to \mathcal{H} has closed range

In following, we give equivalent conditions with conditions of Theorem 3.2.

Lemma 1.4. Let \mathcal{B} be the collection of all Σ -measurable sets E such that

- (i) $\mu(E) < \infty$ and
- (ii) whenever $F \in \Sigma$ satisfies $F \subseteq E$ and $\sup_{\lambda \in \mathcal{H}_1} \int_{\varphi^{-1}(F)} |\langle u, \lambda \rangle| d\mu = 0$, then $\mu(F) = 0$.

Suppose that $E \in \Sigma$ and $\mu(E) < \infty$. Hence, $E \in \mathcal{B}$ if and only if $E \subseteq J$.

Proposition 1.5. The following statements are equivalent.

- (i) There is a constant c > 0 such that $\sup_{\lambda \in \mathcal{H}_1} hE(|\langle u, \lambda \rangle|) \circ \varphi^{-1} \geq c$ on J.
- (ii) There is a constant $\alpha > 0$ such that $\sup_{\lambda \in \mathcal{H}_1} \int_{\varphi^{-1}(E)} |\langle u, \lambda \rangle| d\mu \ge \alpha \mu(E)$ for all $E \in \mathcal{B}$

Let \mathcal{B} be a Banach space and \mathcal{K} be the set of all compact operators on \mathcal{B} , the essential norm of T means the distance from T to \mathcal{K} in the operator norm, namely

$$||T||_e = \inf\{||T - S|| : S \in \mathcal{K}\}.$$

Clearly, T is compact if and only if $||T||_e = 0$. As is seen [?], the essential norm plays an interesting role in the compact problem of concrete operators.

Theorem 1.6. Let T_u^{φ} be a bounded operator on $L^{\theta}(\mu)$. Also let $\alpha = \inf\{r > 0, N_r \text{ consists of finitely many atoms}\}$ and

$$N_r = \{ x \in X := \sup_{\lambda \in \mathcal{H}_1} \| hE(|\langle u, \lambda \rangle|) \circ \varphi^{-1} \ge r \}.$$

4 ZM

Then we obtain that

- (i) $||T_u^{\varphi}||_e = 0$ if and only if $\alpha = 0$. (ii) $||T_u^{\varphi}||_e \ge \frac{1}{a}\alpha$ where $\theta \prec x$ (i.e. for some a > 0 we have $\theta(x) \le ax$. In particular if $a \le 1$ we have $||T_u^{\varphi}||_e \ge \alpha$ (iii) $||T_u^{\varphi}||_e \le a\alpha$ where $x \prec \theta$ (i.e. for some a > 0 we have $\theta(x) \le ax$.In
- particular if $a \le 1$ we have $||T_u^{\varphi}||_e \le \alpha$

References

- 1. Z. Moayyerizadeh, Essential noem of substitution vector-valued integral operator on $L^{1}(\Sigma)$ space, J. Math. Anal. Appl, **448**(2017), 1413-1418.
- 2. M. M. Rao, Conditional measure and applications, Marcel Dekker, New York, 1993.
- 3. M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Marcel Dekker, Inc. New York,
- 4. M. M. Rao Linear functionals on Orlicz spaces: General theory, Pac. J. Math. **25**(1968), 553-585.
- 5. M. M. Rao and Z. D. Ren, Applications of Orlicz spaces, Marcel Dekker, Inc. New York, 2002.
- 6. R. K. Singh and J. S. Manhas, Composition operators on function spaces, North Holland Math. Studies 179, Amsterdam 1993.