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Abstract. In the present paper, Legendre polynomials are effectively
implemented in pricing discrete double barrier options which are com-
monly done through recursive solving Black-Scholes PDEs in the mon-
itoring intervals. By using orthogonal projection based on Legendre
polynomials, we could obtain an operational matrix to approximate the
price of the option.

1. Introduction

A knock-out double barrier option is an option that is deactivated when
the price of the underlying asset touches each of the two predetermined bar-
riers before the expiry date at monitoring dates. Various approaches have
been proposed for pricing barrier options. An analytical method is derived
by Fusai et al. in [1] based on z-transform. The method of finite element
is used by Golbabai et al.[2]. Milev and Tagliani presented a numerical
algorithm for pricing discrete double barrier options [3]. Farnoosh et al.
[4, 5] provide methods for pricing discretely monitored (single or double)
barrier options that work even for the case of time-dependent parameters.
In this paper, Legendre Polynomials is effectively implemented as an or-
thogonal basis for the projection method that causes to operational matrix
form. Computational time is almost fixed and not affected by the number
of monitoring dates. According to the Black-Scholes framework, the price of
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discretely monitored double barrier call option as a function of stock price s
at time t ∈ (tm, tm+1), namely C (s, t,m), is obtained from forward solving
the following partial differential equations with the initial conditions[6]:

−∂C
∂t

+ µs
∂C
∂s

+
1

2
σ2s2

∂2C
∂s2

− rC = 0, (1.1)

C (s, t0, 0) = (s− E)1(max(E,L)≤s≤U) ,

C (s, tm,m) = C (s, tm,m− 1)1(L≤s≤U); m = 1, 2, ...,M − 1 .

The constant coefficients µ and σ are risk-free rate and volatility respectively.
Also, the constants E, L, and U are exercise price, lower and upper barrier
respectively. In the following, two changes of variables are performed. At
first, the function P (z, t,m) is defined as P (z, t,m) := C(s, t,m) where z =

ln
(
s
L

)
, E∗ = ln

(
E
L

)
, µ∗ = µ− σ2

2 , U∗ = ln
(
U
L

)
, δ = max {E∗, 0}. Then the

partial differential equation (1.1) and its initial conditions are changed into:

−Pt + µ∗Pz +
σ2

2
Pzz − µP = 0, (1.2)

P (z, t0, 0) = L
(
ez − eE

∗
)
1(δ≤z≤U∗),

P (z, tm,m) = P (z, tm,m− 1)1(0≤z≤U∗) ; m = 1, 2, ...,M − 1 .

As a second step, the following transformation is applied:

P (z, tm,m) = eαz+βtg(z, t,m),

where α = −µ∗

σ2 ; c2 = σ2

2 ; β = αµ∗ + α2 σ2

2 − µ.
Therefore, the partial differential equation (1.2) and its initial conditions
are led to:

−gt + c2gzz = 0, (1.3)

g (z, t0, 0) = Le−αz
(
ez − eE

∗
)
1(δ≤z≤U∗),

g (z, tm,m) = g (z, tm,m− 1)1(0≤z≤U∗); m = 1, ...,M − 1.

The resulting expressions in (1.3) are known as heat equations. Analytical
solutions to the heat equations at the monitoring dates of equal distances
τ = T

M or equivalently tm = mτ , are denoted by fm (z) := g(z, tm,m − 1)
and evaluated as follows, see e.g [7];

f0 (z) = Le−αz
(
ez − eE

∗
)
1(δ≤z≤U∗), (1.4)

fm (z) = K(fm−1(z)), m = 2, 3, ...,M − 1, (1.5)

where the compact operator K : L2([0, U∗]) → L2([0, U∗]) is defined as
follows:

K (f) (z) :=

∫ U∗

0

1√
4πc2τ

e−
(z−ξ)2

4c2τ f(ξ)dξ. (1.6)

According to the above stages, the price of the knock-out discrete double
barrier European call Option at expiry date T is evaluated by the following
formula:

C (s0, T,M − 1) = e(αz0+βT )fM−1 (z0), (1.7)
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where z0 = ln
(
s0
L

)
.

2. Implementation of Legendre Polynomials

pi(x) = xpi−1(x) +

(
i

i+ 1

)
(xpi−1(x)− pi−2(x)) ,

where p0(x) = 1, and p1(x) = x. The {pi(x)}∞i=0 is an orthogonal ba-

sis for L2[−1, 1]. Now, we define p̃i(x) :=
√

2i+1
U∗ pi

(
U∗

2 x+ U∗

2

)
. These

functions constitute an orthonormal basis for L2[0, U∗]. Consider Πn =
span {p̃i(x)}ni=0 be the space of all polynomials with degrees less than or
equal to n and also Pn : L2[0, U∗] → Πn be orthogonal projection operator,
that is defined as follows:

∀f ∈ L2[0, U∗] Pn (f) =

n∑
i=0

⟨f, p̃i(x)⟩p̃i(x), (2.1)

where ⟨ . , . ⟩ indicates the usual inner product.

Now, we define f̃m,n = PnK
(
f̃m−1,n

)
= (PnK)m (f0) , m ≥ 2 where

(PnK)(f) = Pn (K(f)). Since the continuous projection operators Pn con-
verge pointwise to identity operator I, then operator PnK is also a compact
operator and it could be shown that

lim
n→∞

∥(PnK)m −Km∥ = 0. (2.2)

Since, f̃m,n ∈ Πn for m ≥ 1, we can write

f̃m,n =
n∑

i=0

amip̃i(z) = Φn(x)Fm,

where Fm = [am0, am1, · · · , am2j ]
′ and Φn = [p̃0(x), p̃1(x), · · · , p̃n(x)]′. So

we obtain

f̃m,n = (PnK)m−1
(
f̃1,n

)
. (2.3)

Because Πn is a finite-dimensional linear space, so the linear operator PnK
on Πn could be considered as a (n+ 1)× (n+ 1) matrix K. Consequently,
equation 2.3 can be written as the following matrix operator form:

f̃m,n = Φ′
nK

m−1F1. (2.4)

For computation of the option price by 2.4, it is enough to calculate the
matrix operator K and the vector F1:

F1 = [a10, a11, · · · , a1n]′, K = (kij)(n+1)×(n+1),

a1i =

∫ U∗

0

∫ U∗

δ
p̃i(η)κ(η − ξ, τ)f0(ξ)dξdη , 0 ≤ i ≤ n,

kij =

∫ U∗

0

∫ U∗

0
p̃i(η)p̃j(ξ)κ(η − ξ, τ)dξdη ,
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where κ(z, t) = 1√
4πc2t

e−
z2

4c2t . The matrix form of relation 2.4 implies that

the computational time of the presented algorithm be nearly fixed when
monitoring dates increase. The complexity of our algorithm is O(n2) that
does not depend on the number of monitoring dates.

3. Numerical Result

Here, price of a double knock-out barrier option with T = 0.5, µ = 0.05,
σ = 0.25, s0 = 100 E = 100, U = 120 and different level of lower barrier L is
approximated by presented method. The numerical results are reported and
compared with some other ones. The CPU time of the Presented method
does not increase significantly when the number of monitoring dates in-
creases.

M L Legendre(n = 16) Quad-K30 AMM-8 Benchmark
80 2.4499 2.4499 2.4499 2.4499
90 2.2028 2.2028 2.2027 2.2028

5 95 1.6831 1.6831 1.6830 1.6831
99 1.0811 1.0811 1.0811 1.0811
99.9 0.9432 0.9432 0.9433 0.9432

CPU 0.52 s
80 1.9420 1.9420 1.9419 1.9420
90 1.5354 1.5354 1.5353 1.5354

25 95 0.8668 0.8668 0.8668 0.8668
99 0.2931 0.2931 0.2932 0.2931
99.9 0.2023 0.2023 0.2024 0.2023

CPU 0.54 s

Table 1: Double knock-out barrier option: T = 0.5, µ = 0.05, σ = 0.25,
s0 = 100, E = 100.
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