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Abstract. Let H be a locally compact hypergroup with left invariant
Haar measure and let Lp(H), 1 ≤ p < ∞, be the complex Lebesgue
space associated with it. Let L∞(H) be the set of all locally measurable
functions that are bounded except on a locally null set, modulo functions
that are zero locally a.e. Let µ ∈ M(H). We want to find out when
µF ∈ L1(H) implies that F ∈ L1(H). Some necessary and sufficient
conditions is found for a measure µ for which if µF ∈ L1(H) for every
F ∈ L∞(H)∗, then F ∈ L1(H).

1. Introduction

Hypergroups are locally compact spaces whose bounded Radon measures
form an algebra which has similar properties to the convolution measures
algebra of a locally compact group. Locally compact hypergroups were
independently introduced around the 1970’s by Dunkl, Jewett and Spector.
They generalize the concepts of locally compact groups with the purpose of
doing standard harmonic analysis. For the theory of hypergroups and most
of the basic properties we refer to [2], [4] and [5].
Let H be a locally compact Hausdorff space. Let M(H) be the space of
complex-valued, regular Borel measures on H. We denote by M1(H) the
convex set formed by the probability measures on H. The support of a
measure µ is denoted by suppµ. Let C(H) be the space of all compact
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subsets of H. The triple (M(H),+, ∗) will be called a hypergroup if the
following conditions are satisfied.

(1) the vector space (M(H),+) admits a binary operation ∗ under which
it is an algebra,

(2) for x, y ∈ H, δx ∗ δy is a probability measure on H with compact
support,

(3) the mapping (x, y) 7→ δx ∗ δy of H ×H into M(H) is continuous,
(4) the mapping (x, y) 7→ supp(δx∗δy) ∈ C(H) is continuous with respect

to the Michael topology on the space C(H) of nonvoid compact sets
in H,

(5) there exists a unique e ∈ H such that for every x ∈ H, δe ∗ δx =
δx ∗ δe = δx,

(6) there exists a necessarily unique involution (a homeomorphism x 7→
x̃ of H onto itself with the property (x̃)̃ = x for all x ∈ H) such that

(δx ∗ δy )̃ = δỹ ∗ δx̃,
(7) for x, y ∈ H, e ∈supp(δx ∗ δy) if and only if x = ỹ.

In the following we will write just H instead of (M(H),+, ∗). It is still
unknown if an arbitrary hypergroup admits a left Haar measure. It par-
ticular, it remains unknown whether every amenable hypergroup admits a
left Haar measure. But all the known examples such as commutative hyper-
groups and central hypergroups do, for more information see [1] and [2]. In
this case, one can define the convolution algebra L1(H) with multiplication
f ∗ g(x) =

∫
f(x ∗ y)g(ỹ)dλ(y) for all f, g ∈ L1(H). Recall that L1(H) is

a Banach subalgebra and an ideal in M(H) with a bounded approximate
identity [2]. It should be noted that these algebras include not only the
group algebra L1(G) but also most of the semigroup algebras.

2. Main results

Let H be a hypergroup with left Haar measure λ. The first Arens product
on L∞(H)∗ is defined in stages as follows.
Let µ, ν ∈ L1(H), f ∈ L∞(H) and F,G ∈ L∞(H)∗;

(i) Define fµ ∈ L∞(H) by 〈fµ, ν〉 = 〈f, µ ∗ ν〉;
(ii) Define Ff ∈ L∞(H) by 〈Ff, µ〉 = 〈F, fµ〉;

(iii) Define GF ∈ L∞(H)∗ by 〈GF, f〉 = 〈G,Ff〉.
L∞(H)∗ is a Banach algebra, for more details see [3].

Theorem 2.1. Let H be a hypergroup with left Haar measure λ. Then the
following conditions are equivalent:

(i) there exists 0 6= µ ∈ L1(H) such that if F ∈ L∞(H)∗ and µF ∈
L1(H), then F ∈ L1(H);

(ii) H is discrete.

The following corollary is a direct consequence of theorem 2.1.
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Corollary 2.2. Let H be a compact hypergroup. Then the following condi-
tions are equivalent:

(i) there exists 0 6= µ ∈ L1(H) such that if F ∈ L∞(H)∗ and µF ∈
L1(H), then F ∈ L1(H);

(ii) H is finite.

Let H be a compact hypergroup. Let µ ∈ L1(H). The mapping x 7→
δx ∗ µ is weakly continuous. Since H is compact, {δx ∗ µ; x ∈ H} is rela-
tively weakly compact. By the Krein-Smulian theorem the closed, convex,
circled hull of {δx ∗ µ;x ∈ H} is also weakly compact. It follows that
{ν ∗ µ; ν ∈ L1(H), ‖ν‖ ≤ 1} is relatively weakly compact. It is easy to see
that {µF ;F ∈ L∞(H)∗, ‖F‖ ≤ 1} is relatively weakly compact. Suppose
that F ∈ {F ∈ L∞(H)∗; ‖F‖ ≤ 1} and {να} is a net in {ν ∈ L1(H); ‖ν‖ ≤ 1}
which converges to F in the weak∗-topology. Therefore {µ ∗ να} converges
to µF in the weak∗-topology. Passing to a subnet if necessary, we can as-
sume that {µ ∗ να} converges weak to a measure ν ∈ L1(H). Consequently
µF = ν ∈ L1(H).
The next corollary is an immediate consequence of above explanation.

Corollary 2.3. Let H be an infinite compact hypergroup. Then L1(H) is a
right ideal in L∞(H) and L1(H) is not reflexive.

Theorem 2.4. Let H be a hypergroup with left Haar measure λ. The fol-
lowing two properties of an element µ in M(H) are equivalent:

(i) if F ∈ L∞(H)∗ and µF ∈ L1(H), then F ∈ L1(H);
(ii) if {νn} is a bounded sequence in L1(H) such that {µ ∗ νn} is weakly

convergent, then {νn} contains a weakly convergent subsequence.

For a non-empty subset S of L1(H). The annihilator of S, denoted
Ann(S), is the set of all elements ν in L1(H) such that, for all µ in S,
µ ∗ ν = 0. In set notation,

Ann(S) = {ν ∈ L1(H);µ ∗ ν = 0 for all µ ∈ S}.
Proposition 2.5. Let H be a hypergroup with left Haar measure λ. The
following two properties of an element µ in M(H) are equivalent:

(i) if F ∈ L∞(H)∗ and µF ∈ L1(H), then F ∈ L1(H);
(ii) Ann(µ) is reflexive and µBS ⊆ µS for every closed subspace S of

L1(H).

Let C be the multiplicative group of all complex numbers. Let µ ∈M(C).
Consider the following assertions:

(i) if µF ∈ L1(C), then F ∈ L1(C);
(ii) ν ∈M(C) and µ ∗ ν ∈ L1(C) imply ν ∈ L1(C).

Clearly (i) impies (ii). Are the converse implication true?

Proposition 2.6. Assume that H is a commutative hypergroup. Let µ ∈
M(H), and let {µF ;F ∈ L∞(H)∗}+L1(H) be a dense subspace of L∞(H)∗.
If µF ∈ L1(H), then F ∈ L1(H).
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Proof. Let F ∈ L∞(H)∗ such that µF ∈ L1(H). Let G ∈ L∞(H)∗ and {να}
be a net in L1(H) such that να → G in the weak∗-topology [3]. We can
write

µFG = lim
α
µFνα = lim

α
να ∗ µF = GµF,

because H is commutative. This shows that µFG = GµF for all G ∈
L∞(H)∗. Fix G ∈ L∞(H)∗. By assumption, {µF ;F ∈ L∞(H)∗}+L1(H) is
a dense subspace of L∞(H)∗. Consequently, we can find sequences {Fn} ⊆
L∞(H)∗ and {µn} ⊆ L1(H) with {µFn+µn} norm-convergent to G. There-
fore

FG = lim
n
F (µFn + µn) = lim

n
FµFn + Fµn

= lim
n
µFnF + µnF = lim

n
(µFn + µn)F = GF.

Therefore FG = GF for all G ∈ L∞(H)∗. We next show that F ∈
Zt(L

∞(H)∗) = L1(H) [2]. Indeed, if {Gα} is a net in L∞(H)∗ and Gα → G
in the weak∗-topology, then

lim
α
〈FGα, f〉 = lim

α
〈GαF, f〉 = lim

α
〈Gα, Ff〉

= 〈G,Ff〉 = 〈GF, f〉,
for all f ∈ L∞(H). On the other hand, 〈GF, f〉 = 〈FG, f〉. Hence FGα →
FG (in the weak∗-topology) implies that F is in the topological center of
L∞(H)∗. This completes our proof. �

Recall that a basic sequence {xn} in a Banach spaceX is said to be bound-
edly complete if for each sequence of scalars {αn},

∑∞
n=1 αnxn is convergent

whenever sup{‖
∑n

i=1 αixi‖;n ∈ N} <∞.

Proposition 2.7. Let H be a hypergroup with a left Haar measure, and let
µ ∈M(H). Consider the following assertions:

(i) If {µn} is a basic sequence in B and
∑∞

i=1 ‖µ ∗µn‖ <∞, then {µn}
is boundedly complete;

(ii) F ∈ L∞(H)∗ and µF ∈ L1(H) imply F ∈ L1(H).

Then the implication (i)→ (ii) hold.
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