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Abstract
Present study investigates the dynamic behavior of a three-layered composite nano-plate with an attached nano mass-spring-damper system. The composite constitutes of three layers so that the core is made from magnetostrictive material, whereas, facesheets are supposed to be from a functionally graded material (FGM). Additionally, the proposed system is supposed to be rested on visco-Pasternak foundation. Governing equations of the nano-plate are derived based on higher-order shear deformation theory (HSDT) and Hamilton’s principle. Navier’s solution and Laplace transform are applied to solve partial and ordinary differential equations, respectively. Thereafter, a comprehensive study is carried out whose concentration is on investigation of the influence of different parameters on the dynamic response of the continuous system. The results indicate that adding the mass-spring-damper system to the nano-plate significantly affects the natural frequency. The outcomes can be used as benchmarks for efficient design of nano-sensors, nano-resonators, and drug delivery systems.
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چكيده
مطالعه حاضر رفتار دینامیکی یک نانوصفحه کامپوزیت سه لایه با یک سیستم نانو جرم- فنر-دمپر متصل را بررسی می کند. کامپوزیت از سه لایه تشکیل شده است به طوری که هسته از مواد مگنتواستراکتیو ساخته شده است، در حالی که صفحات بالایی و پایینی از ماده مدرج تابعی ساخته شده اند. علاوه بر این، سیستم پیشنهادی قرار است بر روی پایه ویسکو پاسترناک قرار گیرد. معادلات حاکم بر نانوصفحه بر اساس نظریه تغییر شکل برشی مرتبه بالاتر (HSDT) و اصل همیلتون به دست آمده است. حل ناویر و تبدیل لاپلاس به ترتیب برای حل معادلات دیفرانسیل جزئی و معمولی اعمال می شوند. پس از آن، یک مطالعه جامع انجام شده است که تمرکز آن بر بررسی تأثیر پارامترهای مختلف بر پاسخ دینامیکی سیستم پیوسته است. نتایج نشان می‌دهد که افزودن سیستم جرم- فنر-دمپر به نانو صفحه به طور قابل توجهی بر فرکانس طبیعی تأثیر می‌گذارد. نتایج را می توان به عنوان معیاری برای طراحی کارآمد نانو حسگرها، نانو تشدید کننده ها و سیستم های دارورسانی استفاده کرد.
کليدواژهها: تحلیل ارتعاشات، مواد مگنتواستریکتیو، مواد مدرج تابعی، سیستم جرم-فنر و دمپر
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Introduction
In recent years, functionally graded (FG) materials have been used widely in different science areas because these lightweight components eliminate stress concentration and have high stiffness and strength. A literature review is presented based on the selected related previous studies to pursue the novelty and importance of the present work. Arefi et al. (1) in 2020 analyzed the bending response of FG composite doubly curved nanoshells with thickness stretching using higher-order two-variable sinusoidal shear deformation theory (SSDT) with the help of the principle of virtual work. They understood that by considering the thickness stretching effect, results improve about 4%. Zur et al. (2) analyzed free vibration and buckling magneto-electro-elastic nanoplate based on the nonlocal modified higher-order SSDT. In another work, Arefi and Zenkour (3) studied the thermo-magneto-mechanical bending behavior of a three-layered nanoplate. Their investigation indicates that temperature parameters have a significant effect on the deflection and electric/magnetic potentials. Dynamic behavior of an FG beam using SSDT analyzed by Bourrada et al. (4). Wave propagation of a plate and magneto-electro-elastic nanobeams using SSDT studied by Alimirzaie et al. (5) and Amiri et al. (6), respectively. Arefi and Zenkour (7) used an analytical approach to analyze the thermal stress and deformation of a size-dependent curved nanobeam utilizing SSDT for the simply-supported boundary condition while resting on the Pasternak’s foundation.
On the other hand, due to the fact that magnetostrictive materials, in particular, can convert one sort of energy (magnetic, electric, or mechanic) to another type of energy, many studies reported the vibrational behavior of the magnetostrictive materials. For instance, Ebrahimi et al. studied wave dispersion characteristics of magnetostrictive nanoplates in thermal (8, 9) and hygro-thermal (10) environments. Zenkour and El-Shahrany investigated the vibrational behavior of plates (11-17) and beams (18) containing magnetostrictive layers with different theories and under various conditions. Active control of free and forced vibration of laminated cylindrical shells embedded with magnetostrictive layers studied by Mohammadrezazadeh and Jafari (19) based on classical shell theory. In another attempt, Ebrahimi and Dabbagh (20) analyzed wave propagation of sandwich composite nanoplates using nonlocal strain gradient theory.
On the other hand, systems with an attached mass-spring-damper studied in recent years. For instance, the vibrational behavior of a plate with an added mass system was studied by various authors (21-27). Bakhshalizadeh and Ghadiri (28) studied the size-dependent behavior of graphene sheets subjected to a mass-spring-damper system using the nonlocal Eringen theory. They solved the governing equation, which was reached utilizing Hamilton’s principle with Galerkin’s method. Buckling and vibrational behavior of a carbon nanotube cylindrical 3D shell conveying viscous fluid flow and carrying spring-mass system under various temperature distributions studied by Ebrahimi et al. (29). Tran et al. (30) analyzed a honeycomb plate's dynamic behavior subjected to a moving oscillator load based on the Mindlin plate theory and utilizing the finite element method. In another research, Ghairi et al. (31) examined the vibrational behavior of an axially preloaded Euler-Bernoulli beam carrying a spring-mass-damper system under non-ideal support with the help of the Galerkin method. The vibrational behavior of a thin plate carrying a moving oscillator was studied by Hassanabadi et al. (32). Further, vibration analysis of plates affected by the distributed patch mass was studied with different theories by Alibeigloo et al. (33, 34).
Hence, in the present study, for the first time, attention is focused on the dynamic response and vibrational behavior of the sandwich composites with an attached mass-spring-damper system, which play an imported role in designing the nano-sensors and nano-resonators. Higher-order sinusoidal shear deformation theory, power method-law, Eringen’s nonlocal elasticity theory is used to solve two coupled PDE and ODE governing equations. Further, Navier’s solution and Laplace transform are utilized to solved governing equations. Finally, the natural frequency and mode shapes are obtained, and the effect of various parameters is examined graphically. 

1. Theory and Formulation
The present study considers a sandwich composite with length of a, width of b, and thickness of h in the , , and  directions, respectively. The Cartesian system is used and, the origin is at one corner of the plate. Besides, the nano-plate's core layer component is from the magnetostrictive layer and, two facesheets at the top and bottom surfaces are made from FG material.  The proposed system is subjected to a mass-spring-damper system, as shown in Fig. 1. In order to consider the foundation medium, Winkler and visco-Pasternak have been utilized.
[image: ]
Figure 1: Schematic scheme of the system
1.1. Material properties of the facesheets
It is well-known that in the FG materials, mechanical properties of two isotropic material changes, through the thickness of the layer. In the present work, to evaluate facesheets' mechanical properties, the power-law method is utilized. It is supposed that the facesheets constitute aluminum (Al) as a top surface and zirconium dioxide (ZrO2) as a bottom surface. Based on the power-law method, inhomogeneous Young’s modulus and mass density of the facesheets are given as (35-37):
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Parameter  is the symbol of Young’s modulus and mass density, which function as the facesheets’ thickness. Also, it is supposed that Poisson’s ratio is constant throughout the thickness.

1.2.  Eringen’s Nonlocal Elasticity Theory
In order to develop a mechanism to consider the small-scale effect, which is due to the impression of microstructures or the discrete nature of the material, multiple theories have been developed hitherto (38). Among these theories (39-42), Eringen’s nonlocal theory (43-45) has gained lots of attention due to its simplicity and efficiency. In Eringen’s nonlocal theory, stress and strain quantities are related to each other based on an implicit differential equation (44, 45). According to this theory, the stress at the reference point (x) in an elastic continuum depends not only on the strain of the point x but also on the strain of all the bystander points. The nonlocal stress tensor at point x can be exposed as (40):
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in which  and  are symbols of the nonlocal stress tensor and classical stress tensor, respectively. Also,  is the Laplacian operator. Besides,  is the nonlocal parameter.
1.3.  Kinematic relation
From past years to now, many researchers devoted their time to develop different kinematic theories of shells and plates. Firstly, sinusoidal shear deformation theory was introduced by Touratier (46-48), and after that, it was employed in various studies such as Vidal and Polit (49). The sinusoidal shear deformation theory satisfies the stress-free boundary condition (50). In other words, transverse shear stress vanishes on the top and bottom surface of the plate (51). The displacement field corresponding to the sinusoidal shear deformation theory can be written as follows (47):
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in which  is a shape function that describes the displacement field along the thickness direction and is defined as: , 
It should be noted that for higher-order shear deformation theory, different functions presented by Levinson (52), Murthy (53), and Reddy (54) such as:
 
Alternatively, Kaczkowski (55) and Panc (56) supposed function   to be in the following form: 
 
Additionally,  and  are entire displacement fields in the , and -direction in the Cartesian system, sequentially. Also,  and  are the rotation of the middle surface in the  and -direction, respectively. Further,  is the total thickness of the sandwich composite ().
1.4.  Stress-strain relation for the magnetostrictive materials

We assume that the linearly elastic nanoplate has an orthotropic core (magnetostrictive layer) and isotropic FG facesheets.
The constitutive relation of the core layer can be revealed as (9):
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[bookmark: _Hlk56528454]in which and  are the corresponding components of stress and strain tensors, respectively. When the thickness stretching is supposed to be zero (), then the plane-stress condition exists, and elastic constants can be defined as (57):
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[bookmark: _Hlk56528566]It should be noted that stand for the arrays of the elasticity tensor. Besides, when thickness stretching is not zero () then, the three-dimensional elastic constants would be in the form of bellow (58):
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in which  and  are Lame’s coefficients. Lame’s coefficients are defined as:
,    
[bookmark: _Hlk56528773][bookmark: _Hlk56528782][bookmark: _Hlk56528805][bookmark: _Hlk56528550]Also, and  denote for modulus of the elasticity and Poisson’s ratio of the core layer. In the constitutive equations, signifies the magnetic field, and  are the transformed magnetostrictive moduli that can be reached as:
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 The nonzero strains of the core layer can be defined as:
	
	 
	(15)


where
	
	,,, 
 

	(16)


1.5. Velocity feedback control
[bookmark: _Hlk56528819]By acknowledging velocity feedback control, the magnetic field intensity () can be obtained as a function of coil current from the following relation (10):
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here  signifies the coil constant that depends on a coil’s properties such as its width, radius, and the number of turns of the coil. It should be pointed out that  is the velocity feedback gain and is considered constant. The connection between coil constant and coil features can be expressed as:
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in the above equation, , , and  typify turns of the coil, coil width, and coil radius, respectively. Table 1 lists the material properties of the core layer.

[bookmark: Table1]Table 1: Material properties of the core layer (Terfenol -D)(9).
	Symbol
	 (Pa)
	 ()
	
	

	Value
	30*10e+9
	9.25*10e3
	0.25
	442.55



1.6.  Stress-strain relation of the facesheets
The constitutive relation of the facesheets can be expressed as (59):
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in which elastic coefficients can be defined as:
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 and  are defined as an elastic modulus and Poisson’s ratio of the facesheets, respectively.

[bookmark: Table2]Table 2: Material properties of the FG face-sheets (60)
	Material
	Al
	ZrO2

	E (GPa)
	70
	200

	
	2702
	5700

	
	0.3
	0.3



  The nonzero strains of upper and lower layers can be defined as:
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2. Governing Equation of the nano-plate
In the present part, according to the principle of minimum potential energy, Hamilton’s principle will be implemented to derive the set of the governing equations. To this end, this principle can be expressed as (61):
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in which,  stand for the strain energy, kinetic energy, and work done by external non-conservative forces, respectively.
2.1.  Strain Energy
The variation of the strain energy of the core layer and facesheets can be express as:
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where,
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in the above equations, superscripts ‘c’ and ‘f’ designate core layer and facesheets, respectively. The nonlocal relations of forces and moments with strains are given as:
	
	


	(33)


where
	
	, ,  
	(34)

	
	, ,   

	(35)


where,
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2.2.  External work
The proposed system is supposed to be subjected to two kinds of external work.
· Nano mass-spring-damper system 
· Visco-Pasternak foundation

Although Winkler or one-parameter model is the simplest form of a foundation that brings up just the normal stresses, the Pasternak or two-parameter model measures the transverse shear deformation in addition to the normal stresses. Besides, bear in mind that the visco-Pasternak model is formed by adding a damper to the Pasternak model. Due to the fact that the damping coefficient has a remarkable effect on the dynamic response of the material, it should be propounded in dynamic analysis. Consequently, in the present work, it is supposed that the nano-plate is rested on the visco-Pasternak elastic medium.
The variation of the external work can be expressed as:
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where  ,  and are the spring, shear and damper constants, respectively. 
2.3.  Kinetic Energy
The variation of the kinetic energy can be written as:
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in which the mass moments of inertia are defined as:
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In the present work, the following simply-supported boundary conditions are used as follows:
at: 
	
	, , ,, , 
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2.4.  Equation of Motion
The Euler-Lagrange equation for the sinusoidal shear deformation can be obtained by substituting equations (29)- (39) into equation (28). Thus, after substitution, we have:
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3. Governing equation of the mass-spring-damper system
As shown in Fig.1, the mass-spring-damper system has a spring constant (Ke) and mass (Me) and spring constant (Ce) and is attached to  on the nano-plate. By employing the second law of  Newton (62), the distributed transverse load for the mass-spring-damper system will be obtained as: 
	
	
	(47)

	
	
	(48)


in which  is the symbol of the Dirac delta.  On the other hand, the governing equation of the coupled system could be written as follows (63):
	
	           
	(49)


in which  is the vertical position of the suspended mass.
The relation among the dimensional and non-dimensional quantities below parameters are defined as follows:
	
	       
	(50)



   Also, for convenience, the following dimensionless foundation parameters are defined as:
	
	 
	(51)



4. Analytical Solution
Two coupled governing equations of the nano-plate while carrying a mass-spring-damper system were solved analytically by applying closed-form of the Navier-type solution and Laplace transform. It should be noted that in Navier’s solution, the generalized displacement components are expressed in terms of double Fourier series as a product of unknown coefficients and known trigonometric functions that satisfy the boundary conditions of the problem. To continue, the equations of the motion (42-46) of the nano-plate can be expressed in terms of displacements () by substituting the force and moment resultants from equations (31)-(35) into equation (36).
Some features of Navier’s method are as follow:
· High accuracy, convergence, and performance for different geometries.
· Hold various types of forces such as harmonic and hygro-thermal loads.
Further, the Laplace transform is an integral transform that turns a function of a real variable (t) into a complex variable (s). In other words, by using the Laplace transform, a new system of equations in which time dependency is eliminated will be obtained (64).
Now, by supposing the simply-supported boundary condition, and according to Navier’s solution, the mid-plane displacement and rotation components can be defined by following the Fourier series as (65-67):
	
	  
	(52)



[bookmark: _Hlk62588328]in which , , ,  and  are the amplitude of the vibration. Also,  and  are defined as    .
[bookmark: _Hlk60100435][bookmark: _Hlk60100460][bookmark: _Hlk60100485][bookmark: _Hlk60100551]By interchanging the equation (46) into the equations (41)- (45) and separating the variations of  matrix of ,  ,and  will be obtained. In which, matrix of ,  ,and  are stiffness, mass and damping matrixes which are specified in Appendix
 Also, by utilizing the double-Fourier sine series,  can be written as:
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where,
  could be written in below form with the help of orthogonality condition as:
	
	 
	(54)



combining equations (53) and (54) leads to;
	
	 
	(55)



By substituting Navier’s solution into equations (33) and (34) and combining the resulting equation in equation (40-41) reveal that Navier solution (52) exists under only three circumstances:
1- single orthotropic plate
2- symmetrically laminated plates with orthotropic layers
3- anti-symmetric cross-ply laminated plates that satisfy equation (55)
By substituting equations (52) and (55) into the motion equations and by separating the variations of the displacement components, equation (56) ends as:
	
	 
	(56)



Considering the following initial conditions, the coupled governing equations (49) and equation (56) of the system must be solved simultaneously (63).
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	(57)


   Applying the Laplace transform to equations (49) and (56) leads to the following system of equations:
	
	  
	(58)


in which Laplace transformed form of the displacement elements are defined as:

By applying the Laplace transform to both sides of the governing equation of the coupled system (49) ends as follow: 
	
	  
	(59)



to continue, replacing  from equation (59) into equation (58) points to the following equation:
	
	  
	(60)


where  is defined as:
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in which A and B are defined as:
	
	 
 
	(62)



Additionally, by allowing  , Laplace transformed form of the unknown displacement component ends as:
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In order to injury the displacement component in Z-direction, by developing the third equation,  reaches as:
	
	 
	(64)



now by replacing  by  in both sides of the equation (63), reach as:
	
	 
	(65)


where  and  are defined as:
	
	 
	(66)



To obtain the system’s natural frequencies, the denominator of the equation (36) is set to zero. By illustration, the poles of the equation (65) are the natural frequencies of the coupled system. Imaginary components of the denominator of the equation (65) will be the natural frequencies. Substituting the equation (65) into equation (60) and adopting the Laplace transformed form of Naiver solution, the displacement items will obtain in the time domain.
In conjunction with the injury of the vertical position of the suspended mass, by combining equation (65) with equation (59) and taking advantage of inverse Laplace transform, the vertical location of the suspended mass will achieve in the domain of Laplace transform as follows:
	
	  
	(67)


5. Model verification
In this section, the proposed system is first validated by comparing the obtained results with the literature results. Then, to illustrate the effect of different parameters on the system’s frequency and dynamic response, several parametric investigations are performed.
As the first example, comparison studies have been carried out for the specific case of single-layer isotropic FG plate based on the higher-order SSDT. As previously reported by Neves et al. (68), using 132 Chebyshev points for ) and  and Vel and Batra (69) and Qian et al. (60). In order to obtain an accurate comparison, the magnetostrictive layer was omitted. The plate is graded from zirconium dioxide (bottom surface) to aluminum (top surface) materials. An excellent arrangement can be ascertained between the results, with the present results and previous references.
[bookmark: Table3]Table 3: Comparison of the natural frequencies of an SSSS isotropic functionally graded plate (Al/ZrO2) for different values of gradient index (a/h=5,  )





	Gradient index
	Ref. (60)
	Ref. (69)
	Ref. (68) ()
	Ref. (68) ()
	Present
	Error%

	k=1
	0.2152
	0.2192
	0.2193
	0.2184
	0.216257
	0.98

	k=2
	0.2153
	0.2197
	0.2198
	0.2189
	0.217556
	0.61

	k=3
	0.2172
	0.2211
	0.2212
	0.2202
	0.219041
	0.52

	k=5
	0.2194
	0.2225
	0.2225
	0.2215
	0.221662
	0.07



In theories in which stretching thickness is neglected, the natural frequency is sli11ghtly less than theories that consider thickness stretching (58). A close review of Table 3 for the sandwich composite nanoplate demonstrates that the present model can reach profoundly reliable predictions for all mechanical and various loading problems. So, the proposed system works correctly, and the percent of Error is slight. In addition, the Error is defined as . Table 4 would be related to comparing dimensionless natural frequencies with valid references (70) for a single-layered square magnetostrictive nanoplate. 
[bookmark: Table4]Table 4: Comparison of the natural frequencies (KcC(t)=104, SSSS, =1, hc=0.1a,  )
	Dimensionless Frequency
	Ref. (70)
	Present
	Error%

	
	0.3841
	0.381638
	0.64



Table 5 reports the verification for the formulation presented in section 4 analytical solution for the non-dimensional natural frequencies of a magnetostrictive nano-plate is compared with those of Refs. (71, 72).
[bookmark: Table5]Table 5: Comparison of the natural frequencies the dimensionless natural frequencies ()
	
	Kc C(t)=103

	hc=2
	Ref. (71)
	Ref. (72)
	Present

	
	1.046
	1.000
	1.0067



As shown in Table 4 and Table 5, the outcomes present substantial agreement for any feedback gain parameter value.
6. Results and Discussion
Numerical results are carried out in this section for the sandwich composite with an attached nano mass-spring-damper system. It is supposed that the three-layered composite constitutes magnetostrictive material as a core layer and two FG material as facesheets. 
In all the Tables below, proposed values are considered; otherwise, it is stated.
 A=b=20 nm, hc=1 nm, hf=0.2 nm, Kw= Kp=0, , Kc C(t)=1*105
To show the effect value of the damper’s coefficient (visco-Pasternak foundation) on the amplitude of the nanoplate’s central deflection, Figure 2 has been plotted. As this figure depicts, increasing the damper’s coefficient results in decreasing the amplitude of the deflection of the center of the plate. This is because of the positive influence of viscose damping on the attenuation of the oscillations’ amplitude.
[image: ]
[bookmark: FIGURE3]Figure 2: Central deflection of the nano-plate (W (a/2, b/2, t)) versus time for different values of the damper’s coefficient.

Figure 3 highlights the principal consequences of the suspended mass and spring’s coefficient in the vibration of the nano-plate. As shown in Figure 4, by increasing the value of the suspended mass and spring’s coefficient, the nano-plate’s natural frequency increases.
[image: ]
[bookmark: FIGURE5]Figure 3: Effect of the mass-spring system on the natural frequency of the nano-plate (Kw=10, Kp=3, k=0, )

To apprehend the effect of the thickness of the magnetostrictive layer (core layer) on the natural frequency of the nano-plate, Figure 4 has been constructed. As anticipated, in this case, an increment in the value of the core layer’s thickness increases the nano-plate’s natural frequency. Also, the natural frequency is decreased once a bigger value is assigned to the nonlocal parameter. This is because of the stiffness-softening impact of the nonlocality on the stiffness of the nanostructures.
[image: ]
[bookmark: FIGURE6]Figure 4: Natural frequencies of the sandwich composite magnetostrictive nanoplate allied with FGM facesheets verse thickness of the core layer

Conclusion
Some of the remarkable results of the present work are listed as below:
1- By keeping out from the center of the nano-plate, the natural frequency decreases.
2- Increasing the value of the feedback gain has a significant effect on the natural frequency of the nano-plate as well as the frequency of the mass-spring-damper system.
3- When the spring’s coefficient is more considerable, variation in the natural frequency is more sensible. 
4- The frequency of the attached system is less than that of a separated mass-spring-damper system.
5- Increasing the suspended mass value results in a significant increment in the nano-plate's natural frequency, particularly for the first shape mode.
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