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ABSTRACT. In this paper we introduce modular frame. woven
modular frame in Hilbert C*- Modules. And we show that un-
der certain conditions the image of two woven modular frames is
woven modular framed under linear operators.

1. INTRODUCTION

Hilbert space frames were originally introduced by Duffin and Scha-
effer to deal with some problems in non harmonic Fourier analysis[’
Frames can be viewed as redundant bases which are generalizations of
Riesz bases [1, 2, 3, 4]. This redundancy property sometimes is ex-
tremely important in applications such as signal and image processing,
data compression and sampling theory. Hilbert C*-modules are gener-
alizations of Hilbert spaces by allowing the inner product to take values
in a C*-algebra rather than in the field of complex numbers. Frames for
Hilbert spaces have natural analogues for Hilbert C*-modules. These
frames are called Hilbert C*-modular frames or just simply modular
frames. Modular frames are not trivial generalizations of Hilbert space
frames due to the complex structure of C*-algebras. It is well known
that the theory of Hilbert C*-modules is quite different from that of
Hilbert spaces. For example, we know that, any closed linear subspace
in a Hilbert space has an orthogonal complement. But this is no longer
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true in Hilbert C*-module seting since not every closed submodule of
a Hilbert C*-module is complemented. Moreover, the Riesz represen-
tation theorem for continuous functionals on Hilbert spaces does not
hold in Hilbert C*-modules, and so there exist nonadjointable bounded
linear operators on Hilbert C*-modules [1, 2]. Therefore it is expected
that problems about frames in HilbertC*-modules are more compli-
cated than those in Hilbert spaces. While some of the results about
frames in Hilbert spaces can be easily extended to Hilbert C*-modular
frames, many others cannot. be obtained by simply modifying the ap-
proaches used in Hilbert spaces case.

2. WOVEN MODULAR FRAME

In this section, first we recall some definitions and basic properties
of Hilbert C*- Modules and p-woven frame and g-frame in Hilbert C*-
Modaules [1, 2, 4]. Throughont this note A is a unital C*-algebra and
H, K; are finitely or countably generated Hilbert A-modules. For each
i € I, L(H,K;) will denote the set of all adjointable A-linear maps
from H to K;. We also define

£(A) =

Definition 2.1. A pre-Hilbert A-module is a left A-module H equipped
with an A-valued inner product (.,.) : H x H — A, such that

(i) (z.2) > 0 for all = € H and (r,z) = 0 if and only if =0,

(z,4) = (v.2)" for all 2,y € H,

(i) (az +y.2) = a(z.2) + (y.2) for all a € A and z,, € H.

= (i) € A: Y,/ aja; is norm convergent in A}

We assume that the linear operations of A and H are compatible.i
Aaz) = (Aa)z for every A€ C. a € A and z € H. For every z € H,
we define

lzl=l (o) I and o] = (z.0)

If the pre-Hilbert A-module (H, {...)) is complete with respect to || . |,
it is called a Hilbert A-module or a Hilbert C*-modules over A. In this
paper we focus on finitely and countably generated Hilbert C*-modules
over unital C*-algebra A. A Hilbert A-module H is (algebraically)
finitely generated if there exists a finite subset {z1,s. ...z} of H
such that every element = € H can be expressed as an A-linear com-
bination z = I, a;zi,a; € A. A Hilbert A-module H is countably
generated if there exists a countable set of generators.

We now recall the definitions of frames and Riesz bases in Hilbert C*-
modules as follows.
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Definition 2.2. Let H be a Hilbert A-module. A family {z; : i € I}
of clemenis of H is a (standard) frame for H, if there exits constants
0<C <D< oo, such that for all z € H,

Cla.x) € X (e mi) (xe.2) < Dz, z). o)
Where the sum in the middle of the inequality convergent in norm for
reH.
The numbers C and D are called frame bounds, If C = D = X, it
is called & A-tight frame and when C'= D = 1, it is called a Parseval
frame. {z; : i € I} is said to be a Bessel sequence if only the right-hand
side inequality is required.If the sum of (1) is convergent in norm, the
frame is called standard.

According to what Arambasic and Khosravi proved, the above defi-
nition is equivalent to

Clle PN Cierbe. i) (i 2) IP< D ||« |, (]
A sequence {z; : i € I} is said to be a Riesz basis of H if it is a
frame and a generating set with the additional property that A-linear
combinations 3, ; aiz; with coefficients {a : i € S} C A and S C 1
are equal to zero if and only if in particular every summand a; equal
zero for i € S.
Note that we can also define the analysis operator, synthesis operator
and frame operator for modular frame s follows.
Suppose that {z; : i € /} is a frame of a finitely o countably generated
Hilbert A-module H over a unital C*-algebra A. The operator T : H —
£2(A) defined by Tz = {(z. ) }ier. is called the analysis operator. The
adjoint operator T : £2(A4) — H is given by T*{a;}ies = Yo aiti- T*
is called pre-frame operator or the synthesis operator. By composing
T and T, we obtain the frame operator S : H — H,

Se=TTr=Y(ea)z, (1)

is a frame operator for H. That is S € End’(H), positive and invert-
ible. Where Endy(H) is the set of adjointable A-linear maps on H.
The frame {S~'a; : i € I} is said to be the canonical dual frame of
{riel).

Remark 2.3. 1f A be a unital C*-algebra, H be a finitely or countably
generated Hilbert A-module and {r; : i € I} be Parseval frame(not nec-
essarily standard) of H, then the reconstruction formula z = "¢, (r, 2,
holds for every z € H. Alo from equation (1) we see that z
Sier(r. Sz, is vailid for every x € H.

Moreover, if {z; : i € I} be standard frame, then there exists a unique
operator § € Endy(H) such that z = Y, (¢, Sxi)zi.





image4.png
. AMIR KHOSRAVI MOFAMMAD REZA FARMANT
Theorem 2.4. Let {x; : i € I}, {y; : i € I} be woven modular frame
with frame bounds C.D_and Q,.Q; € L(H), Q, be invertible and |

T @ — Qe ll< /G- Then {Quri zi € I}, {Quyi zi € I} are
woven modular frame.

Proof. Since || 1= @7'Qs lI< \/5 < 1, then Qs is invertible , so0

{Qay; : i € I} is a modular frame. Now for every o C I and each
rTEeH:

Q. Que)(@uriz) + 3 (x. Quud(Quui. )t

=3 i

(@i Qin)+ Y Qi+ Qi Qo) o Qi Qi QD)

=

> VO(Qiz.Qix) VD 1 Q3 - Qi lll = |

Ve .
\IQ:’ ] -VDIQ:-Qil Izl

and

Z(r Que) @iz 2+ (r, Qud(Quue ) < DUNQ P+ 11 Q3 1) = 17

k=
=}
Corollary 2.5. Let {z, :i € I}, {y;:i € I} be woven modular frame
with bounds C,D and with frame operator S’ respectively. Then
{S~'zi:i€ I} and {S™"y; :i € I} are woven modular frames, when

Is=5l<\/5Is I

In this case their cononical dual frame {S™'z; : i € I} and {S"™'y;
i€ I} are woven modular frames.
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