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Abstract. Let B(X) be the algebra of all bounded linear
operators on infinite-dimensional complex Banach space X.
For T ∈ B(X) and λ ∈ C, let XT ({λ}) denotes the local spectral
subspace of T associated with {λ}. We investigate the form of all
maps ϕ1 and ϕ2 on B(X) such that, for every T and S in B(X),
the local spectral subspace of TS and ϕ1(T )ϕ2(S) are the same
associated with singleton set {λ}. Also, we obtain some interesting
results in direction when X = Cn.

1. Introduction

Throughout this paper, Let B(X) be the algebra of all bounded
linear operators on infinite-dimensional complex Banach space X and
its unit will be denoted by I. For any vector x0 ∈ X, let Bx0(X) be the
collection of all operators in B(X) vanishing at x0. The local resolvent
set, ρT (x), of an operator T ∈ B(X) at some point x ∈ X is the set of
all λ ∈ C for which there exists an open neighborhood U of λ in C and
a X-valued analytic function f : U −→ X such that (µI − T )f(µ) = x
for all µ ∈ U . The complement of local resolvent set is called the local
spectrum of T at x, denoted by σT (x), and is obviously a closed subset
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(possibly empty) of σ(T ), the spectrum of T . For every subset F ⊆ C
the local spectral subspace XT (F ) is defined by

XT (F ) = {x ∈ X : σT (x) ⊆ F}.
Clearly, if F1 ⊆ F2 then XT (F1) ⊆ XT (F2). For more information
about these notions one can see the book [1].

The problem of describing linear or additive maps on B(X) pre-
serving the local spectra has been initiated by Bourhim and Ransford
in [5], and continued by several authors; see for instance [3] and the
references therein. Motivated by the result from the theory of linear
preservers proved by Jafarian and Sourour [7], Dolinar et al. [6], char-
acterised the form of maps preserving the lattice of sum of operators,
they showed that maps (not necessarily linear) ϕ : B(X)→ B(X) sat-
isfy Lat(ϕ(A) + ϕ(B)) = Lat(A+B) for all A,B ∈ B(X), if and only
if there is a non zero scalar α and a map φ : B(X) → K such that
ϕ(A) = αA + φ(A)I for all A ∈ B(X). Recall that XT (Ω), the local
spectral subspace of T associated with a subset Ω of C, is an element of
Lat(T ), so one can replace the lattice preserving property by the local
spectral subspace preserving property.
In [2], Benbouziane et al. characterized the forms of all maps preserv-
ing the local spectral subspace of sum, difference, product and triple
product of operators associated with a singleton.
For a vector x ∈ X and a linear functional f in the dual space X∗ of
X, let x⊗ f stands for the operator of rank at most one defined by

(x⊗ f)y = f(y)x, ∀ y ∈ X.
We denote F1(X) the set of all rank-one operators on X and N1(X)
be the set of nilpotent operators in F1(X). Note that x ⊗ f ∈ N1(X)
if and only if f(x) = 0.

The following lemma gives an explicit identification of local spectral
subspace in the case of rank-one operator.

Lemma 1.1. [5] Let R ∈ F1(X) be a non-nilpotent operator, and let λ
be a nonzero eigenvalue of R. Then XR(0) = ker(R) and
XR({λ}) = Im(R).

The nonzero local spectrum of T ∈ B(X) at any x0 ∈ X is defined by

σ∗
T (x0) :=

{
{0} if σT (x0) = {0},

σT (T ) \ {0} if σT (x0) 6= {0}.
Lemma 1.2. [4] For a nonzero vector x0 ∈ X and a nonzero operator
R ∈ B(X), the following statements are equivalent.
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(a) R has rank one.
(b) σ∗

RT (x0) contains at most one element for all T ∈ B(X).

In this paper, we investigate the form of all maps ϕ1 and ϕ2 on B(X)
such that, for every T and S in B(X), the local spectral subspace of
TS and ϕ1(T )ϕ2(S) are the same associated with the singleton set {λ}.

2. Main results

The following Lemma is a key of the proofs coming after.

Lemma 2.1. [2] Let x be a nonzero vector in X and T, S ∈ B(X). If
XT ({λ}) = XS({λ}) for all λ ∈ C. Then, σT (x) = {µ} if and only if
σS(x) = {µ} for all µ ∈ C.

This theorem will be useful in the proofs of the main results.

Theorem 2.2. [2] Let T, S ∈ B(X). The following statements are
equivalent.
(1) T = S
(2) XTR({λ}) = XSR({λ}) for all λ ∈ C and R ∈ F1(X).

Theorem 2.3. If two surjective linear maps ϕ1 and ϕ2 from B(X)
onto B(X) satisfy

Xϕ1(T )ϕ2(S)({λ}) = XTS({λ}), ∀ T, S ∈ B(X), ∀ λ ∈ C
then ϕ2 maps Bx0(X) onto Bx0(X) and there exist two bijective linear
mappings A : X → X and B : X → X such that

ϕ1(T ) = ATB, (T ∈ B(X)),

and
ϕ2(T ) = B−1TA−1, (T /∈ Bx0(X)).

Proof. We break down the proof of Theorem into several steps.
Step 1. ϕ1 is bijective.
Step 2. ϕ1 preserves rank one operators in both directions.
step 3. ϕ2(Bx0(X)) = Bx0(X).
Step 4. There are bijective linear mappings P : X → X and Q : X? →
X? such that ϕ1(x⊗ f) = Px⊗Qf for all x ∈ X and f ∈ X?.
Step 5. For any x ∈ X and f ∈ X?, we have f(x) = (Qf)(ϕ2(I)Px)
Step 6. P is continuous and ϕ2(I) is invertible.
Step 7. ϕ2(T ) = B−1TA−1 for all T /∈ Bx0(X)), where A = α−1P for
some nonzero scalar α ∈ C and B = (ϕ2(I)A)−1.
Step 8. ϕ1(T ) = ATB for every T ∈ B(X). �
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In the case X is a finite dimensional space, we have a good descrip-
tion of the concepts involved in local spectral theory; see for instance
[8]. Let Mn(C) denote the algebra of all n× n complex matrices, and
for any vector x0 ∈ Cn, let Mn,x0(C) be the collection of all matrices in
Mn(C) vanishing at x0.
Remark. [8]. Let T ∈ Mn(C) and λ1, λ2, ..., λr be the distinct eigen-
values of T and denote by E1, E2, ..., Er the corresponding root spaces.
We have Cn = E1 ⊕ E2 ⊕ ...⊕ Er and T = T1 ⊕ T2 ⊕ ...⊕ Tr where Ti
is the restriction of T to Ei. It follows that for every x ∈ Cn,

σT (x) =
⋃
{σTi

(Pix) : 1 ≤ i ≤ r} = {λi : 1 ≤ i ≤ r, Pi(x) 6= 0}

where Pi : Cn → Ei is the canonical projection.

However, if X = Cn, then the surjectivity ϕ1 and ϕ2 in Theorem 2.3
is redundant, as is shown by our next result.

Theorem 2.4. Two maps ϕ1 and ϕ2 on Mn(C) satisfy

Xϕ1(T )ϕ2(S)({λ}) = XTS({λ}) ∀ T, S ∈Mn(C), ∀ λ ∈ C
if and only if ϕ2 maps Mn,x0(C) into itself and there are two invertible
matrices A and B in Cn such that

ϕ1(T ) = ATB, (T ∈Mn(C)),

and
ϕ2(T ) = B−1TA−1, (T /∈Mn,x0(C)).
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