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ABSTRACT. In this work we consider a generalized dissipative ZK
equation. The associated linear part produces both semigroup and
group. As the dissipation is directional, we use a regularization
method to study the associated initial value problem in Sobolev
spaces H® (R™) and some weighted spaces F2P. We also prove an
ill-posedness result in the two-dimensional case.

1. INTRODUCTION
In this paper, we study of the following evolution equation
ug + (Lo + f(u)), =0, t € RY, (1.1)

where L, = Au — au, is the ZK operator with a directional dissi-
pation. Here, a € R, f is a differentiable real-valued function on R
such that f(0) = 0 and f'(0) = 0 and we consider u = u(zx,y,t) such
that (z,y) € R x R n > 2. We also assume that f(z) = O(zP™!),
for p € N. The evolution equation (1.1) is known as the ZKB equa-
tion when f(u) = u?/2, because of appearing the ZK operator and the
Burgers-type dissipation. The ZKB equation (1.1) describes asymptoti-
cally the propagations of nonlinear dust acoustic waves in a nonuniform
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magnetized dusty plasma [3, 1]. By neglecting the dissipative term in
(1.1), we will get the so-called ZK equation.
u + (Au+ f(u)), = 0. (1.2)

In this work, we are going to study the Cauchy problem associated
to (1.1) in Sobolev spaces. Our strategy is to use a regularization
by applying more dissipative terms to the equation; in fact, we will
consider the following regularized ZKB (rZKB) problem:

ur + (Au+ f(u) — aug)r — AL u =0, (1.3)

where f € Rt and A = 92 + A;. Next, by using the semigroup
properties of (1.3), we endeavor to prove a well-posedness result in
H*(R?) spaces for s > 2 and show our results hold in weak topology as
the parameter 3 tends to zero. In dimension two, we will also show that
(1.1) is well-posed in the weighted spaces H*(W) (see Definition 2.1)
for some suitable weight functions V. Regarding on the ill-posedness
issue, we are not able to derive a criterion to anticipate the minimum
index of local well-posedness due to the directional dissipation; but we
establish that the flow-map of equation (1.1) fails to be C? in H*"(RR?)
for s < —32.

2. MAIN RESULTS

Now we summarize our main results skipping several propositions
and technical lemmas.

Definition 2.1. We denote by L?(W) the space of all real-valued
functions f such that || f[|720ye = [ f2(2)W(2) dz < oo, where
H*®* = H*(R") is the nonhomogeneous Sobolev space. Especially, for

W(z) = 1+ ;xf" and r = (r,---,7m,) € R" we denote F? the

space of all real-valued measurable functions f such that | f||z =
| fllzrs + I fllzowy < oo. Similarly for any p > 1, one can define
FoP = H*N LP(W). For r € R, we denote F; as ;. and H*(W) =
Hs N LA(W).

Using properties of the semigroup associated to the linear problem,
we can obtain the our main local well-posedness theorem.

Theorem 2.2. Let s > 2. Then for any initial data uy € H?®, there
exist Ty 5 = T (v, B, |[uol| +) and a unique solution of the initial value

problem (1.3), uqp(-), defined in the interval [0,T5 5] satisfying uap €
C([0,T5 5] ;H*) nC ([0, T3 5] ; H2). Moreover,

uas € C ((0,T5 5] H®).
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Furthermore, the theorem is true for § = 0 (in the weak topology sense)
and o = [ = 0.

To prove Theorem 2.2, we use the following estimates. The semi-
group associated with (1.1) is denoted by U, s.

Lemma 2.3. Let o, 8 > 0 and s € R, then for any d > 0 and allt > 0,
Uaps(t) € L(H®, H*®). Moreover there exists Cy > 0 such that
[t,6() | ir5+5 < Con/1 4t max{a~s, B2} ||uol| s, (2.1)
for any uy € H®.
Lemma 2.4. Let U 4(t) = Uap(t)do, m = (my,ma), k = (k1,ka) €
(Z*)?, x € R? and t > 0, where &y is Dirac delta.
i)  If2 <p< o0, then there exists C(a, 5) > 0 such that

|2 DU 5(0)]),, < Cla, B)(y2 ¢3m=20=3) - (2.9)

ii) If 1 <p <2, then there exists C(c, 3) > 0 such that

DU 4(1)]|,, < Ol By 20D ¢720-0)5 (2.3)

1/2

where k| = ki + ko, |m| =my +my and (t) = (1 + t?)
i) Ua p(t) € LP for any 2 < p < oo, if ug € L. Moreover,

||u0¢15(t)||LP 5 t_GHUOHLpa
= =12
where 6§ = f(p) =1 — 2.

Now, we use the properties of the Kato-Ponce commutator [2]. Let
J* be is the Bessel potential of order —s and S(R?) is the Schwartz
class.

Lemma 2.5. If f,g € S(R?), s >0 and p € (1,+00), then

117°, Melgll o < IV Fllzon ([ 77l oy + 0T Fll s gllzea) , (2:4)
1fgllr S (WF Mo 17°g1 poa + 197 Fll s Ngllzrs) (2.5)

where pa, ps € (1,+00) such that
1 1 1 1 1

P P11 D2 D3 Da

Theorem 2.6 (CONTINUOUS DEPENDENCE). There exists a metric
space E;, 5 such that for R > 0, the correspondence ug — uap that
associates to ug € Br the solution ua g of (1.3) with initial data ug is
continuous mapping of Br to E, 5, where By is the ball of radius R
centered at the origin of H®.
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To study the well-posedness in the weighted spaces, we need to un-
derstand the behavior of our semigroup in such spaces.

Remark 2.7. One can obtain the explicit form of X(¢), T° and Ar.
Indeed,

25 ||uo |2
P u() s
X(t) = Hp 29
(2 — cstplluol|f.)»
9 2 .
TS = Y ERTIERY and AT: ||UO|H 1 for anyTe (07T8)
(csplluollzs) (2 = cspT||uol|%rs) P

Lemma 2.8. Letpm €N, 3> 0,t >0 and w = (wy,wy) € R% Then
there exists C' (m, B, |w|) > 0 such that for any f € Fop

0,m’

|w

w el m—|w|
|D%Ua 1) 1z, < € (. B ) (1 47F 44757) |l

Theorem 2.9 (WELL-POSEDNESS RESULT IN WEIGHTED SPACES).
Let W be a weight with all its first and second derivatives bounded and
such that W (x,y)| < Cge€($2+y2), for all (z,y) € R? and any ¢ € (0,8),
for some € > 0 and C. > 0. Let also ug € H* (W), s > 2. Then the
solution us g of the equation (1.3) corresponding to the initial data ug
1s in C ([O,Tjﬂ) s H? (W)) Moreover, the continuous dependence of
solutions of the equation (1.1) holds in H* (W).

Theorem 2.10 (PERSISTENCE OF SOLUTIONS). Let s € N, s > 3
and B > 0. Also suppose that u,z € C ([O,Tjﬁ) ;HS) s the maximal
solution of the rZKB equation corresponding to the initial data ug €
.7-"1852 Then uqs € C (0,75 5) ,.7:1552)

Next, we show that the Picard iteration method cannot be used to
obtain a solution of (1.1). Indeed, we construct a sequence of initial
data that will ensure the irregularity of the flow map for s < —3/4.

Theorem 2.11 (ILL-POSEDNESS RESULT). Let s < —3 and H*°(R?)
be the x-directional Sobolev space. Then there is no T > 0 such that
the ZKB equation (1.1), with f(u) = u?/2, admits a unique solution u
in C([0,T]; H*°(R?)) for any initial data in the same ball of H*°(R?)
centered at the origin and the map ¢ — wu is C?-differentiable at the
origin from H*°(R?) to C([0,T]; H*°(R?)).
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