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Abstract. In this work we consider a generalized dissipative ZK
equation. The associated linear part produces both semigroup and
group. As the dissipation is directional, we use a regularization
method to study the associated initial value problem in Sobolev
spaces Hs (Rn) and some weighted spaces Fs,p

r . We also prove an
ill-posedness result in the two-dimensional case.

1. Introduction

In this paper, we study of the following evolution equation

ut + (Lα + f(u))x = 0, t ∈ R+, (1.1)

where Lα = ∆u − αux is the ZK operator with a directional dissi-
pation. Here, α ∈ R, f is a differentiable real-valued function on R
such that f(0) = 0 and f ′(0) = 0 and we consider u = u(x, y, t) such
that (x, y) ∈ R × Rn−1, n ≥ 2. We also assume that f(x) = O(xp+1),
for p ∈ N. The evolution equation (1.1) is known as the ZKB equa-
tion when f(u) = u2/2, because of appearing the ZK operator and the
Burgers-type dissipation. The ZKB equation (1.1) describes asymptoti-
cally the propagations of nonlinear dust acoustic waves in a nonuniform
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magnetized dusty plasma [3, 1]. By neglecting the dissipative term in
(1.1), we will get the so-called ZK equation.

ut + (∆u+ f(u))x = 0. (1.2)

In this work, we are going to study the Cauchy problem associated
to (1.1) in Sobolev spaces. Our strategy is to use a regularization
by applying more dissipative terms to the equation; in fact, we will
consider the following regularized ZKB (rZKB) problem:

ut + (∆u+ f(u)− αux)x − β∆⊥u = 0, (1.3)

where β ∈ R+ and 4 = ∂2x + 4⊥. Next, by using the semigroup
properties of (1.3), we endeavor to prove a well-posedness result in
Hs(R2) spaces for s > 2 and show our results hold in weak topology as
the parameter β tends to zero. In dimension two, we will also show that
(1.1) is well-posed in the weighted spaces Hs(W) (see Definition 2.1)
for some suitable weight functions W . Regarding on the ill-posedness
issue, we are not able to derive a criterion to anticipate the minimum
index of local well-posedness due to the directional dissipation; but we
establish that the flow-map of equation (1.1) fails to be C2 in Hs,0(R2)
for s < −3

4
.

2. Main results

Now we summarize our main results skipping several propositions
and technical lemmas.

Definition 2.1. We denote by L2(W) the space of all real-valued
functions f such that ‖f‖2L2(Wdx) =

∫
f 2(x)W(x) dx < ∞, where

Hs = Hs(Rn) is the nonhomogeneous Sobolev space. Especially, for

W(x) = 1 +
n∑
i=1

x2rii and r = (r1, · · · , rn) ∈ Rn, we denote F sr the

space of all real-valued measurable functions f such that ‖f‖Fsr =
‖f‖Hs + ‖f‖L2(W) < ∞. Similarly for any p ≥ 1, one can define
F s,pr = Hs ∩ Lp(W). For r ∈ R, we denote F sr as F sr,··· ,r and Hs(W) =

Hs ∩ L2(W).

Using properties of the semigroup associated to the linear problem,
we can obtain the our main local well-posedness theorem.

Theorem 2.2. Let s > 2. Then for any initial data u0 ∈ Hs, there
exist T sα,β = T (α, β, ‖u0‖Hs) and a unique solution of the initial value

problem (1.3), uα,β(·), defined in the interval
[
0, T sα,β

]
satisfying uα,β ∈

C
([

0, T sα,β
]

;Hs
)
∩ C1

([
0, T sα,β

]
;Hs−2). Moreover,

uα,β ∈ C
((

0, T sα,β
]

;H∞
)
.
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Furthermore, the theorem is true for β = 0 (in the weak topology sense)
and α = β = 0.

To prove Theorem 2.2, we use the following estimates. The semi-
group associated with (1.1) is denoted by Uα,β.

Lemma 2.3. Let α, β > 0 and s ∈ R, then for any δ ≥ 0 and all t > 0,
Uα,β(t) ∈ L(Hs, Hs+δ). Moreover there exists Cs > 0 such that

‖uα,β(t)‖Hs+δ ≤ Cs
√

1 + t−s max{α−s, β−s} ‖u0‖Hs , (2.1)

for any u0 ∈ Hs.

Lemma 2.4. Let U0
α,β(t) = Uα,β(t)δ0, m = (m1,m2), k = (k1, k2) ∈

(Z+)
2
, x ∈ R2 and t > 0, where δ0 is Dirac delta.

i) If 2 ≤ p ≤ ∞, then there exists C(α, β) > 0 such that∥∥xkDmU0
α,β(t)

∥∥
Lp
≤ C(α, β)〈t〉

1
2
|k| t−

1
2
|m|−2(1− 1

p). (2.2)

ii) If 1 ≤ p ≤ 2, then there exists C(α, β) > 0 such that∥∥xkDmU0
α,β(t)

∥∥
Lp
≤ C(α, β)〈t〉

1
2
(|k|−1) t−2(1−

1
p)−

|m|
2 , (2.3)

where |k| = k1 + k2, |m| = m1 +m2 and 〈t〉 = (1 + t2)
1/2

.
iii) uα,β(t) ∈ Lp for any 2 ≤ p ≤ ∞, if u0 ∈ L2. Moreover,

‖uα,β(t)‖Lp . t−θ‖u0‖Lp ,
where θ = θ(p) = 1− 2

p
.

Now, we use the properties of the Kato-Ponce commutator [2]. Let
Js be is the Bessel potential of order −s and S(R2) is the Schwartz
class.

Lemma 2.5. If f, g ∈ S(R2), s > 0 and p ∈ (1,+∞), then

‖[Js,Mf ]g‖Lp .
(
‖∇f‖Lp1

∥∥Js−1g∥∥
Lp2

+ ‖Jsf‖Lp3 ‖g‖Lp4
)
, (2.4)

‖fg‖Lp . (‖f‖Lp1 ‖Jsg‖Lp2 + ‖Jsf‖Lp3 ‖g‖Lp4 ) , (2.5)

where p2, p3 ∈ (1,+∞) such that

1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
.

Theorem 2.6 (Continuous Dependence). There exists a metric
space Es

α,β such that for R > 0, the correspondence u0 → uα,β that
associates to u0 ∈ BR the solution uα,β of (1.3) with initial data u0 is
continuous mapping of BR to Es

α,β, where BR is the ball of radius R
centered at the origin of Hs.
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To study the well-posedness in the weighted spaces, we need to un-
derstand the behavior of our semigroup in such spaces.

Remark 2.7. One can obtain the explicit form of X (t), T s and AT .
Indeed,

X (t) =
2

2
p‖u0‖2Hs

(2− cstp‖u0‖pHs)
2
p

,

T s =
2

(csp‖u0‖2Hs)
and AT =

2
1
p‖u0‖Hs

(2− cspT‖u0‖pHs)
1
p

, for any T ∈ (0, T s).

Lemma 2.8. Let p,m ∈ N, β > 0, t > 0 and ω = (ω1, ω2) ∈ R2. Then
there exists C (m,β, |ω|) > 0 such that for any f ∈ F0,p

0,m,

‖DωUα,β(t)f‖F0,p
0,m
≤ C (m,β, |ω|)

(
1 + t−

|ω|
2 + t

m−|ω|
2

)
‖f‖F0,p

0,m

Theorem 2.9 (Well-posedness Result in Weighted Spaces).
Let W be a weight with all its first and second derivatives bounded and

such that |W(x, y)| ≤ Cεe
ε(x2+y2), for all (x, y) ∈ R2 and any ε ∈ (0, ε̃),

for some ε̃ > 0 and Cε > 0. Let also u0 ∈ Hs (W), s > 2. Then the
solution uα,β of the equation (1.3) corresponding to the initial data u0
is in C

([
0, T sα,β

)
;Hs (W)

)
. Moreover, the continuous dependence of

solutions of the equation (1.1) holds in Hs (W).

Theorem 2.10 (Persistence of Solutions). Let s ∈ N, s ≥ 3
and β ≥ 0. Also suppose that uα,β ∈ C

([
0, T sα,β

)
;Hs

)
is the maximal

solution of the rZKB equation corresponding to the initial data u0 ∈
F s,21,s . Then uα,β ∈ C

([
0, T sα,β

)
;F s,21,s

)
.

Next, we show that the Picard iteration method cannot be used to
obtain a solution of (1.1). Indeed, we construct a sequence of initial
data that will ensure the irregularity of the flow map for s < −3/4.

Theorem 2.11 (Ill-posedness Result). Let s < −3
4

and Hs,0(R2)
be the x-directional Sobolev space. Then there is no T > 0 such that
the ZKB equation (1.1), with f(u) = u2/2, admits a unique solution u
in C([0, T ];Hs,0(R2)) for any initial data in the same ball of Hs,0(R2)
centered at the origin and the map φ → u is C2-differentiable at the
origin from Hs,0(R2) to C([0, T ];Hs,0(R2)).
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