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Abstract. In this paper, we obtain that C∗
ψ,ϕ is bounded below

on H2 or A2
α if and only if Cψ,ϕ is invertible.

1. Introduction

Let D denote the open unit disk in the complex plane. For α > −1,
the weighted Bergman space A2

α(D) = A2
α is the set of functions f

analytic in D with

‖f‖2α+2 = (α + 1)

∫
D
|f(z)|2(1− |z|2)αdA(z) <∞,

where dA is the normalized area measure in D. The case when α = 0 is
known as the (unweighted) Bergman space, and is often denoted simply
A2.

The Hardy space, denoted H2(D) = H2, is the set of all analytic
functions f on D, satisfying the norm condition

‖f‖21 = lim
r→1

∫ 2π

0

|f(reiθ)|2 dθ
2π

<∞.

The space H∞(D) = H∞ consists of all the functions that are analytic
and bounded on D, with supremum norm ‖f‖∞ = supz∈D |f(z)|.
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Let ϕ be an analytic map from the open unit disk D into itself. The
operator that takes the analytic map f to f ◦ϕ is a composition oper-
ator and is denoted by Cϕ. A natural generalization of a composition
operator is an operator that takes f to ψ ·f ◦ϕ, where ψ is a fixed ana-
lytic map on D. This operator is aptly named a weighted composition
operator and is usually denoted by Cψ,ϕ. More precisely, if z is in the
unit disk then (Cψ,ϕf)(z) = ψ(z)f(ϕ(z)).

Suppose that H and H ′ are Hilbert spaces and A : H → H ′ is a
bounded operator. The operator A is said to be left semi-Fredholm if
there is a bounded operator B : H ′ → H and a compact operator K
on H such that BA = I +K. Analogously, A is right semi-Fredholm if
there is a bounded operator B′ : H ′ → H and a compact operator K ′

on H ′ such that AB′ = I +K ′. An operator A is said to be Fredholm
if it is both left and right semi-Fredholm. It is not hard to see that A
is left semi-Fredholm if and only if A∗ is right semi-Fredholm. Hence
A is Fredholm if and only if A∗ is Fredholm. Note that an invertible
operator is Fredholm. By using the definition of Fredholm operator,
it is not hard to see that if the operators A and B are Fredholm on a
Hilbert space H, then AB is also Fredholm on H.

The automorphisms of D, that is, the one-to-one analytic maps of
the disk onto itself, are just the functions ϕ(z) = λ a−z

1−az , where |λ| = 1
and |a| < 1. We denote the class of automorphisms of D by Aut(D).
Automorphisms of D take ∂D onto ∂D. It is known that Cϕ is Fredholm
on the Hardy space if and only if ϕ ∈ Aut(D) (see [1]).

In the second section, we investigate Fredholm and invertible weighted
composition operators. In Theorem 2.7, we show that the operator C∗ψ,ϕ
is bounded below on H2 or A2

α if and only if Cψ,ϕ is invertible. In this
paper, we state some results of [4].

2. Main results

Let H be a Hilbert space. The set of all bounded operators from H
into itself is denoted by B(H). We say that an operator A ∈ B(H) is
bounded below if there is a constant c > 0 such that c‖h‖ ≤ ‖A(h)‖
for all h ∈ H.

If f is defined on a set V and if there is a positive constant m so that
|f(z)| ≥ m, for all z in V , we say f is bounded away from zero on V .
In particular, we say that ψ is bounded away from zero near the unit
circle, that is, there are δ > 0 and ε > 0 such that

|ψ(z)| > ε for δ < |z| < 1.
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Now we state the following simple and well-known lemma, and we
frequently use it in this paper.

Lemma 2.1. Let Cψ,ϕ be a bounded operator on H2 or A2
α. Then, for

each w ∈ D, C∗ψ,ϕKw = ψ(w)Kϕ(w).

Lemma 2.2. Suppose that A and B are two bounded operators on a
Hilbert space H. If AB is a Fredholm operator, then B is left semi-
Fredholm.

Zhao in [5] characterized Fredholm weighted composition operators
on H2. Also Zhao in [6] found necessary conditions of ϕ and ψ for
a weighted composition operator Cψ,ϕ on A2

α to be Fredholm. In the
following proposition, we obtain a necessary and sufficient condition
for Cψ,ϕ to be Fredholm on H2 and A2

α. The idea of the proof of the
next proposition is different from [5] and [6].

Proposition 2.3. The operator C∗ψ,ϕ is left semi-Fredholm on H2 or

A2
α if and only if ϕ ∈ Aut(D) and ψ ∈ H∞ is bounded away from zero

near the unit circle. Under this conditions Cψ,ϕ is a Fredholm operator.

In the next proposition, we find a necessary condition of ψ for an
operator C∗ψ,ϕ to be bounded below on H2 and A2

α. Then we use Propo-
sition 2.4 in order to obtain all invertible weighted composition opera-
tors on H2 and A2

α.

Proposition 2.4. Let ψ be an analytic map of D and ϕ be an analytic
self-map of D. If C∗ψ,ϕ is bounded below on H2 or A2

α, then ψ ∈ H∞ is
bounded away from zero on D and ϕ ∈ Aut(D).

Bourdon in [2, Theorem 3.4] obtained the following corollary; we
give another proof (see also [3, Theorem 2.0.1]).

Corollary 2.5. Let ψ be an analytic map of D and ϕ be an analytic
self-map of D. The weighted composition operator Cψ,ϕ is invertible on
H2 or A2

α if and only if ϕ ∈ Aut(D) and ψ ∈ H∞ is bounded away from
zero on D.

Note that if Cψ,ϕ is invertible, then C∗ψ,ϕ is bounded below. Hence
by Proposition 2.4 and Corollary 2.5, we can see that C∗ψ,ϕ is bounded
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below if and only if Cψ,ϕ is invertible.

The algebra A(D) consists of all continuous functions on the closure
of D that are analytic on D. In the next corollary, we find some Fred-
holm weighted composition operators which are not invertible.

Corollary 2.6. Suppose that ϕ ∈ Aut(D) and ψ ∈ A(D). Assume that
{z ∈ D : ψ(z) = 0} is a nonempty finite set and for each z ∈ ∂D,
ψ(z) 6= 0. Then Cψ,ϕ is Fredholm, but it is not invertible.

Theorem 2.7. Suppose that ψ is an analytic map of D and ϕ is an
analytic self-map of D. The operator C∗ψ,ϕ is bounded below on H2 or

A2
α if and only if ϕ ∈ Aut(D) and ψ ∈ H∞ is bounded away from zero

on D.
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