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Abstract. Let ϕ be a nonconstant analytic self-map of the open
unit disk in C, with ‖ϕ‖∞ < 1. Consider the operator Dϕ, acting
on the Hardy space H2, given by differentiation followed by com-
position with ϕ. We obtain results relating to the norm of such an
operator.

1. Introduction

Let D denote the open unit disk in the complex plane. The Hardy
space H2 is the Hilbert space consisting of all analytic functions f(z) =∑∞

n=0 anz
n on D such that

‖f‖ =
∞∑
n=0

|an|2 <∞.

We write H∞ to denote the space of all bounded analytic functions on
D, with ‖f‖∞ = sup{|f(z)| : z ∈ D}.
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For an analytic map ϕ : D → D, the composition operator Cϕ is
defined by the rule Cϕ(f) = f ◦ ϕ. Every composition operator is
bounded on H2, with√

1

1− |ϕ(0)|2
≤ ‖Cϕ‖ ≤

√
1 + |ϕ(0)|
1− |ϕ(0)|

.

(See, for example, [2, Corollary 3.7].) For a function ψ in H∞, the
Toeplitz operator Tψ is defined Tψ(f) = ψ · f . Every such operator is
bounded on H2, with ‖Tψ‖ = ‖ψ‖∞ (see [7, Theorem 5]).

In the context of analytic functions on D, it also seems reasonable to
consider operators defined in terms of differentiation. It is easy to see
that the differentiation operator D(f) = f ′ is unbounded on the Hardy
space: ‖D(zn)‖/‖zn‖ = n for any natural number n. Nevertheless, for
many analytic maps ϕ : D→ D, the operator

f(z) 7→ f ′(ϕ(z)) (1.1)

is bounded on H2. Many authors, following the example of [5] and
[6], have used the notation CϕD to denote such an operator. Because
of the unboundedness of D, it makes sense to write (1.1) as a single
operator, particularly when that operator is bounded on H2. We will
write Dϕ to denote the operator on H2 given by the rule

Dϕ(f) = f ′ ◦ ϕ.

We will refer to such an operator as a composition–differentiation op-
erator. The Closed Graph Theorem shows that Dϕ is bounded on H2

whenever Dϕ takes H2 into itself.
Ohno [6] established a basic set of results relating to when the oper-

ators we are calling Dϕ are bounded or compact on H2. We will only
be considering ϕ with ‖ϕ‖∞ < 1, in which case Dϕ is guaranteed to be
Hilbert–Schmidt on H2, and hence both bounded and compact (see [6,
Theorem 3.3]). There are instances of bounded or compact Dϕ with
‖ϕ‖∞ = 1, but they are beyond the scope of our current investigation.

The purpose of this note is to explore the operators Dϕ in more de-
tail. In particular, we find a representation for the adjoint D∗ϕ when ϕ is
linear fractional (Theorem 2.1). In the specific case where ρ(z) = rz for
0 < |r| < 1, we compute the norm ‖Dρ‖ explicitly (Theorem 2.2). Ap-
plying established results relating to composition operators, we also ob-
tain estimates for the norm of Dϕ whenever ‖ϕ‖∞ < 1 (Theorem 2.3).
In this paper, we state some results of [3]. Moreover, normality and self-
adjointness of a slightly broader class of composition–differentiation
operators were investigated in [4].
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For any point w in D, define Kw(z) = 1
1−wz . It is well known that

Kw acts as the reproducing kernel function for point-evaluation:

〈f,Kw〉 = f(w)

for any f in H2. In a similar manner, define

K(1)
w (z) =

z

(1− wz)2
.

Observe that K
(1)
w acts as the reproducing kernel for point-evaluation

of the first derivative: 〈
f,K(1)

w

〉
= f ′(w)

2. Main results

The goal of this section is to obtain information about the adjoint
and norm of Dϕ in certain specific instances. If ϕ(z) = az+b

cz+d
is a non-

constant linear fractional self-map of D, then the map σ(z) = az−c
−bz+d .

also takes D into itself (see [1, Lemma 1]). It is not difficult to show that
‖σ‖∞ < 1 whenever ‖ϕ‖∞ < 1. The relationship between these two
maps has long been considered in reference to the adjoints of composi-
tion operators. In the context of composition–differentiation operators,
we obtain the following formula.

Theorem 2.1. For a pair of linear fractional maps ϕ and σ, as de-
scribed above, D∗ϕT

∗
K

(1)
σ(0)

= T
K

(1)
ϕ(0)

Dσ.

This result bears a close resemblance to Cowen’s adjoint formula for
composition operators (see [1, Theorem 2]), which can be rewritten
C∗ϕT

∗
Kσ(0)

= TKϕ(0)Cσ.

Theorem 2.2. If ρ(z) = rz for some real number 0 < r < 1, then

‖Dρ‖ =

⌊
1

1− r

⌋
rb1/(1−r)c−1, (2.1)

where b · c denotes the greatest integer function.

There are several interesting consequences of Theorem 2.2. First of
all, ‖Dρ‖ = 1 for 0 < r ≤ 1/2 and ‖Dρ‖ > 1 for 1/2 < r < 1. Secondly,
‖Dρ‖ tends to ∞ as r goes to 1. Since composition with a rotation is
an isometry, (2.1) holds with r replaced by |r| for any complex number
r with 0 < |r| < 1. Likewise, the same formula holds for ‖Dϕ‖ where
ϕ(z) = rzk for any k in N.
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Let ‖ϕ‖∞ ≤ r < 1 and define ϕr = (1/r)ϕ. Observe that

Dϕ = CϕrDρ. (2.2)

Since ‖Dϕ‖ ≤ ‖Cϕr‖‖Dρ‖, we obtain the following estimate for ‖Dϕ‖.

Theorem 2.3. If ϕ is a nonconstant analytic self-map of D, with
‖ϕ‖∞ < 1, then√

1 + |ϕ(0)|2(
1− |ϕ(0)|2

)3 ≤ ‖Dϕ‖ ≤

√
r + |ϕ(0)|
r − |ϕ(0)|

⌊
1

1− r

⌋
rb1/(1−r)c−1,

whenever ‖ϕ‖∞ ≤ r < 1.

Example 2.4. If ‖ϕ‖∞ ≤ 1/2, we may take r = 1/2 to see that√
1 + |ϕ(0)|2(
1− |ϕ(0)|2

)3 ≤ ‖Dϕ‖ ≤

√
1 + 2|ϕ(0)|
1− 2|ϕ(0)|

.

In particular, ‖Dϕ‖ = 1 whenever both ‖ϕ‖∞ ≤ 1/2 and ϕ(0) = 0.
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