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Abstract. The ultimate goal of this performs study is to pro-
vide proof of the stability of an approach based on cubic B-spline
collocation methods (CBSCM) for solving the time-fractional sto-
chastic advection-diffusion equation (TFSADE). We prove that the
stability. We prove that the proposed scheme is unconditionally
stable.

1. Introduction

Recently, finding a solution for a class of fractional differential equa-
tions involving Brownian motion is highly important, because this type
of equation is rarely be solved due to randomness, and the analysis of
differential equations involving random coefficients gives us more de-
tails of the phenomenon behavior.
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We originally intend to obtain the numerical solution of the following
stochastic equation:

Dα
t u(x, t) + Lu(x, t) = f(x, t), x ∈ (a, b), t ∈ (0, T ],

Lu(x, t) = σ1
∂u(x, t)

∂x
− (σ2 + σ3Ḃ(t))

∂2u(x, t)

∂x2
,

(1.1)

with the following initial and boundary conditions

u(x, 0) = g(x), x ∈ [a, b], (1.2)
u(a, t) = u(b, t) = 0, t ∈ (0, T ], (1.3)

where σ1 is the coefficient of advection, and σ2 and σ3 are the coef-
ficients of diffusion terms. g(x) is a continuous function. The source
function f(x, t) is a sufficiently smooth function. Here, Lis a linier spa-
tial derivative operator and 0 ≤ α < 1 is order fractional coefficient of
the equation. Also, the phrase Ḃ(t) = dB(t)

dt
is white noise where B(t)

is a Brownian motion. For discretization of B(t), we set t = tj and let
Bj = B(tj).

2. Numerical Scheme

First we consider two arbitrary constants M,N ∈ N. We assume

a = x0 < x1 < · · · < xM = b, xi = a+ i(
b− a

M
), (i = 0, 1, 2, · · · ,M)

0 = t0 < t1 < · · · < tN = T, tk = k(
T

N
), (k = 0, 1, 2, · · · , N).

are uniform partition in the solution domain [a, b] and [0, T ], respec-
tively.

Now let Bm(x) for m = −1, · · · ,M + 1 be the cubic trigonometric
B-spline function in the uniform partition on [a, b] that can be defined
as follows

Bm(x) =
1

h3



(x− xm−2)
3, x ∈ [xm−2, xm−1],

h3 + 3h2(x− xm−1) + 3h(x− xm−1)
2 − 3(x− xm−1)

3, x ∈ [xm−1, xm],

h3 + 3h2(xm+1 − x) + 3h(xm+1 − x)2 − 3(xm+1 − x)3, x ∈ [xm, xm+1],

(xm+2 − x)3, x ∈ [xm+1, xm+2],

0, o.w.

(2.1)
It is obvious that the support of the cubic trigonometric B-spline
Bm(x) and its derivative is [xm−2, xm+2].
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Let u(x, t) and U(x, t) are the analytical and numerical solutions of
the differential equation (1.1), respectively. According to the colloca-
tion method, the numerical solution can be approximated as

u(x, t) ≃ U(x, t) =
M+1∑
m=−1

δm(t)B
3
m(x), (2.2)

and the coefficients δm(t) are to be determined by the numerical scheme
proposed in this paper.

The matrix form of Equation (2.3) is as follows

Aδk+1 = B

(
bkδ

0 +

k−1∑
j=0

(bj − bj+1)δ
k−j

)
+ fk+1, k = 0, 1, · · · , n− 1, (2.3)

where δk = [δk−1, δ
k
0 , δ

k
1 , · · · , δkN , δkN+1]

T is the unknown parameters, A
and B are the coefficients matrices and fk = [fk

0 , · · · , fk
N ]

T and the
matrices A and B are as follows

A =



12σ1
h + 36σ2

h2

a1 a2 a3
a1 a2 a3

. . . . . . . . .
a1 a2 a3

a1 a2 a3
12σ1
h + 36σ2

h2


,

where r − 3σ1

h
− 6θj

h2 := aj1, 4r +
12θj
h2 := aj2 and r + 3σ1

h
− 6θj

h2 := aj3.
Ḃ ≃ B(tj)−B(tj−1)

τ
:= ζj for j = 1, · · · , N , and σ2 + σ3ζj := θj.

B =



0 0 0 0
r 4r r 0
0 r 4r r

. . . . . . . . .
r 4r r 0
0 r 4r r
0 0 0 0


, fk+1 =


0
...

fk+1

...
0

 .

The matrix A in (N+1)×(N+1) dimensions is a symmetric positive
definite matrix.

3. The stability of the method

Theorem 3.1. The numerical scheme (2.3) for solving the initial and
boundary value problem (1.1)-(1.2) is unconditionally stable.
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Proof. We used the Von-Neumann processes and suppose that f(x, t) =
0. Since the error of the method is only related to the time parameters
δkm, denoting ek := δk+1−δk as the error of scheme at time level k, the
numerical scheme (2.3) can be rewritten as

(r − 3σ1

h
− 6θj

h2
)ek+1

m−1 + (4r +
12θj
h2

)ek+1
m + (r +

3σ1

h
− 6θj

h2
)ek+1

m+1 = rekm−1 + 4rekm + rekm+1

−
k∑

s=1

bs{r[ek−s+1
m−1 − ek−s

m−1] + 4r[ek−s+1
m − ek−s

m ] + r[ek−s+1
m+1 − ek−s

m+1]}. (3.1)

Then substituting the Fourier mode ekm = vkeimρ(i :=
√
−1) into (3.1)

results
vk+1{(r − 3σ1

h
− 6θj

h2
)e−iρ + (4r +

12θj
h2

) + (r +
3σ1

h
− 6θj

h2
)eiρ = vk{re−iρ + 4r + reiρ}

−
k∑

s=1

bs{(vk−s+1 − vk−s)× (re−iρ + 4r + reiρ),

or vk+1 = Q{bkv0 +
∑k−1

s=0(bs − bs+1)v
k−s}, where

Q =
2r(1 + 2 cos2(ρ

2
))

2r(1 + 2 cos2(ρ
2
)) + 24σ2

h2 sin2(ρ
2
) + i6σ1

h
sin(ρ)

.

It is very clear that |Q|2 ≤ 1. For k = 0, (??) we have v1 = Qb0v
0, and

can be written |v1| = |Q||b0||v0| ≤ |v0|. Let |vj| ≤ |v0|, j = 1, 2, ..., k.
We have,

|vk+1| ≤ bk|v0|+
k−1∑
s=0

(bs − bs+1)|vk−s| ≤ bs|v0|+
k−1∑
s=0

(bs − bs+1)|v0|

= |v0|(bs +
k−1∑
s=0

(bs − bs+1)) ≤ |v0|.

This relation shows that |ek+1| ≤ |e0|, and as a result, the method is
unconditionally stable. □
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