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ABSTRACT. In this paper, we establish Ostrowski’s type inequal-
ity for uniformly s-convex functions. Also, we obtain some new
inequalities of Ostrowski’s type for functions whose derivatives in
absolute value are the class of uniformly s-convex.

1. INTRODUCTION

In 1928 Ostrowski proved the following result:
IF f: 1 — R is continous on (a,b) and f’: I — R is bounded on (a, b)
such that || f'||oc < oo then

|f(z) =

1 (z—2fh)? B
[ rwan <5+ S50 - e

for all + € (a,b). The constant Z in above inequality is the best.
Because of the attractiveness of the inequality topic, in recent years, a
lot of researchers have improved the Ostrowski and other inequality to
other functions (see[l], [3], [1], [7])-
In this section, we consider the basic concepts and results, which are
needed to obtain our main results.

In [[2], Definition 10.5], the class of uniformly convex functions is
defined as follows and we generalize this definition to uniformly convex

functions in the following.
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Definition 1.1. Let f : R — R be a function. Then f is called
uniformly s-convex function with modulus 1 : [0, +00) — [0, +o0] if ¥
is increasing, v vanishes only at 0, and

fltz+ Q1 =t)y) + (1 = )(lr —yl) < f(2) + (1 -1)°fy), (1.1)

for each 2,y € [0,+00) and t € [0, 1]. Furthermore, if s = 1, then f is
called uniformly convex.

Example 1.2. ([2]) In view of the equality,
(tz+ (1= t)y)* + (1 = t)(x —y)* = ta” + (1 = 1)y,

for all t € (0,1) and =,y € R, the function f(t) = t*> for t € R is
uniformly convex with s = 1 and modulus 9 (t) = ¢ for all ¢ > 0.

In [1], Alomari et al. proved the following inequality of Ostrowski
type for functions whose derivative in absolute value are s-convex in
the second sense.

Lemma 1.3. Let f : I C R — R be a differentiable mapping on I° and
a,b e I with a <b. If f' € Lla,b], then the following equality holds:

b—a b—a

(bb__?2 /01 tf'(tx 4 (1 —t)b)dt

b a2 1
f(z) — ! /f(t)dtzu/o tf'(ter + (1 —t)a)dt

for each x € [a,b].

2. MAIN RESULTS

2.1. Ostrowski type inequalities.

Theorem 2.1. Let f : I C [0,400) — [0,400) be a differentiable
mapping on I° such that f' € Lla,b], where a,b € I with a < b.
If |f'| is uniformly s-convex on [a,b] for some fired s € (0,1] and
|f'(x)| < M,z € [a,b], then the following inequality holds:

1 b M (z—a)*+ (x—0b)?
@)= 5= | 10 <57 |

b—a s+1
1 [(95 —a)*¥(|z —al) + (x — b)*(|lz — b])
b—a (s+1)(s+2)

].
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Proof. In view of Lemma 1.3 and uniformly s-convexity of |f’|, one has

@) — /Jﬁﬂﬂs

b—a
(x—a)?® [*

— /0t]f’(tx+(1—t)a)\dt+<b_x)2/0 HF (b + (1 — £)b)|dt

b—a
_(a—a)?

= AtWUﬁM+Uf¢ﬂfmﬂ—fﬂ—wwm—amﬁ
(x— b)?
b—a

< C= D) [ era i@ [ -

n AtWUhﬂ+@—ﬂ%ﬂw—fu—www—MWt

- [ - oulle - add

(x — b’

b—a

-1£f“u—wwu—MMﬂ
()] T@T(s+ 1)

(2 — a)?

" [W@»Af“w+u%nltu_wﬁ

) I'(s+2)T(2)
S el s s v m Gl e v A G
(x =02 [f(@)] TERI(s+1) [(s +2)0(2)
rp— [8+2 I'(s+3) AU I'(s+4) Ylle = b))
<($—a)2[|f'(l“)| 1S (z—al) |
~ b—a "s+2 (s+1)(s+2) (s+3)(s+2)
L@@ O el
b—a "s+2  (s+1)(s+2) (s+3)(s+2)

< (:L‘—a)2[ M U(lz —al) (x—b)* M Uz — af)

|+

]

= b—a 's+1 (s+3)(s+2) b—a [S+1_(S+3)(S+2)
oM @b 1 (o= ol —a) o= (e - b)
“b—a s+1 b—a (s+3)(s+2)

0J

Remark 2.2. In Theorem 2.3, if s = 1, then
1 b M (z—a)*+ (x—0b)?
— <
@)= 5= | f0a] <=

L el —a) + G- P b,
b—a 12 '
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New inequalities of Ostrowski’s type for uniformly s-convex functions
as follows:

Theorem 2.3. Let f : I C [0,400) — [0,4+00) be a differentiable
mapping on 1° such that f' € Lla,b], where a,b € I with a <b. If |f'|?
is uniformly s-convex on [a, b] for some fized s € (0,1],p,q > 1, }—17—1—% =1
and | f'(z)| < M,z € [a,b], then the following inequality holds:

1 b (x—a)?, 1
b_a/a foa < 5= )

(x—0)2, 1
+ b—a (p—I—l

2(s +2)M7 — ¢(|z — al)
(s+1)(s+2)

) [2(5 +2)M7 — 9|z —b])
(s+1)(s+2)

Proof. By Lemma 1.3 and Holder’s inequality, we conclude

dt<
f(2) b_a/f |

— [(/O tpdti/ | (tz + (1 — t)a)|%dt)

ey | rani / £t + (1= t)p)|de)

oy 1 ([ @ -l

< b—a (p+1)
~ve—a) [ e0-na:

SR e [a- @
~ v -b) [ - tay’

(w—a)* 1 o |f @ |[f(@ ¢(zr—al)
= b—a (p—i-l)p( s+1 N s+1 _(5—1—1)(5—1—2))

Sl

fx) =

[

Ja

3 =

Ja

Q=

3=

Q=

(=02 1 o [f'@)  [f O  ¢(z—b) 2
+ b—a <p+1)p( s+1 + s+1 _(s+1)(s—|—2)>q
(x—a)*, 1 12(s+2)M?—(jx —al),z
= 5=a Gl (s+1)(s+2) I’
(x =02 125+ DM (e ) s
b—a "p+1 (s+1)(s+2) ‘
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