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Abstract. In this paper, F−harmonic maps with potential be-
tween Riemannian manifolds are studied. First, the variational
formulas for these types of maps are obtained. Then, stability of
F−harmonic maps from a Riemannian manifold into a standard
unit sphere is studied.

1. Introduction

In 1964, Sampson and Eells investigated the properties of harmonic
maps. They also proved the fundamental existence theorem for har-
monic maps. From up to now, many scholars have done research on
this topic,[3, 4]. These kind of maps have an important role in many
branch of physics, mathematics and mechanics such as liquid crystal,
ferromagnetic material, super conductor, etc., see [5, 6].
In [7], Ratto introduced the notion of harmonic maps with potential.
Recently many research have done on this topic, Y. Chu [2]. Let H be a
smooth function on a smooth manifold N and let φ : (M, g) −→ (N, h)
be a smooth map between Riemannian manifolds, . Assume that
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e(φ) :=
1

2
| dφ |2. The function

EH(φ) =

∫
M

[e(φ)−H(φ)]dυg, (1.1)

is called the H−energy function of φ. Moreover, any critical points of
EH is said to be harmonic map with potential H.
F -harmonic maps as an extension of geodesics , minimal surfaces and

harmonic maps were first investigated by Ara in 1999, [1]. Consider a
C2-function F : [0,∞) −→ [0,∞) such that F ′ > 0 on (0,∞). The
smooth map φ is called F-harmonic if φ is a critical point of the
F -energy functional:

EF (φ) =

∫
M

F(
| dφ |2

2
)dυg (1.2)

F -energy functional could be categorized as exponential energy, p-
energy, or energy when F(t) is equal to et, (2t)

p
2 /p (p ≥ 4) or t,

respectively. By calculating the first variation formula for F -energy
functional , it can be obtain that

τF(φ) := F ′( | dφ |
2

2
)τ(φ) + dφ(gradg(F ′(

| dφ |2

2
))) = 0 (1.3)

The operator τF(φ) is said to be the F-tension field of the map φ.

In view of physics, F -harmonic maps have a key role in physical
cosmology, physics and mechanics. For instance, they are studied to
investigate the phenomenon of the quintessence,[3].

In this paper, F -harmonic maps with potential is introduced. Then,
the first and second variation formulas for these maps are derived.
Finally, the stability of F - harmonic maps with potential into the unit
sphere equipped with induced metric is studied.

2. Main results

In this part, first, the notion of F−energy functional with potential
H is studied. Then, the variation formulas are obtained. Finally, the
stability of these maps are investigated.
Consider the C3 map φ : M −→ N between Riemannian manifolds.
Denote the Levi-Civita connection ofM,N and φ−1TN by M∇,N ∇ and
∇̂. Let H be a smooth function on N and let F : [0,∞) −→ [0,∞) be a
C3− strictly increasing function . F-bienergy functional with potential
H can be considered as follows:

EF,H
(φ) =

∫
M

(F(
| dφ |2

2
) +H ◦ φ)dυg. (2.1)
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A map φ is said to be F-harmonic with potential H if φ is a critical
point of the F-energy functional. F-harmonic maps with potential H
can be categorized as harmonic , p-harmonic or exponentially harmonic
when F (t) is equal to t, (2t)

p
2 /p ( p ≥ 4) or et respectively. By choosing

a local orthonormal frame field {ei} on M , The F − H−tension field
of φ, τF,H(φ), is defined by

τF,H(φ) = F ′(
| dφ |2

2
)τ(φ) + dφ(gradF ′(

| dφ |2

2
)) +N ∇H ◦ φ, (2.2)

here τ(φ) =
∑m

i=1{∇̂eidφ(ei)− dφ(M∇eiei)} is the tension field of φ.
According to the above notations we get

Lemma 2.1. (The first variation formula) Let φ : (M, g) −→ (N, h)
be a smooth map. Then

d

dt
EF,H(φt) |t=0= −

∫
M

h(τF,H(φ), V )dυg, (2.3)

where V = dφt
dt
|t=0 .

By 2.1, the notion of F−harmonic map with potential H for the
functional EF,H can be defined as follows

Definition 2.2. A C2 map φ is said to be F−harmonic with potential
H for the functional EF,H if τF,H(φ) = 0.

Definition 2.3. Let φ : (M, g) −→ (N, h) be an F−harmonic map
with potential H, and let φt : M −→ N (−ε < t < ε) be a smooth

variation of φ0 = φ and V =
∂φt
∂t
|t=0. Setting

I(V ) =
d2

dt2
EF,H(φt) |t=0

The map φ is said to be stable if I(V ) ≥ 0 for any vector field V along
φ.

By computing the second variation formula, it can be seen that

I(V ) =

∫
M

F ′′(
| dφ |2

2
)〈∇̂V, dφ〉2dvg

+

∫
M

F ′(
| dφ |2

2
)

{
〈| ∇̂V |2 −h(traceg

NR(V, dφ)dφ

− (∇N
V grad

NH) ◦ φ, V )

}
dυg (2.4)

where | ∇̂V | denotes the Hilbert-Schmidt norm of the ∇̂V ∈ Γ(T ∗M×
φ−1TN). By (2.4), we have
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Theorem 2.4. Let φ : (M, g) −→ Sn be a stable F− harmonic map
with potential H from a Riemannian manifold (M, g) to Sn(n > 2),
and let 4SnH ◦φ ≥ 0. Suppose that (F(e(φ)))′′ < 0 for n < 2. Then φ
is constant.

According to (2.4), we get

Corollary 2.5. Let φ : (M, g) −→ Sn be a stable F−harmonic map
with potential H from a Riemannian manifold (M, g) to Sn(n > 2).
Suppose that H is an affine function. Then φ is constant.
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